лечебно-диагностический центр
тел. регистратуры: /3452/ 507-543
адрес: Тюмень, ул. М.Горького 44, 4 этаж
пн. - чт. с 9:00 до 17:00, пт. с 9:00 до 16:00,
сб. с 9:00 до 13:00

studfiles.net

специалисты

наша лицензия

cанитарно- эпидемиологическое заключение

Какие процессы составляют обмен веществ как они взаимосвязаны 5 класс


ПОИСК

Статьи Рисунки Таблицы О сайте English

    Обмен веществ в клетке или в организме можно определить как совокупность всех химических процессов, которые могут в них протекать. Поэтому обмен веществ даже у простого одноклеточного организма не представляет собой чего-то неизменного — в любой данный момент времени реализуются только одни какие-то его возможности, а другие остаются невыраженными. Естественно возникает вопрос о факторах, контролирующих выражение обмена веществ. Этим факторам, т. е. проблеме регуляции обмена, уделяется в современной биохимии очень большое внимание как в области эксперимента, так и в области теоретических исследований. Регуляция обмена осуществляется с помощью чувствительной системы взаимосвязанных механизмов слежения и настройки, в которую входят и внутренние компоненты (наследственные, генетические) и внешние (обусловленные средой, физиологические). Поскольку все процессы обмена веществ взаимосвязаны во времени и пространстве, образуя единое целое, любые воздействия затрагивают весь обмен в целом, хотя для удобства мы можем в первом приближении сосредоточить наше внимание на какой-либо одной реакции и ее участниках. Считается аксиомой, что весь обмен веществ и его регуляцию можно прямо или косвенно объяснить, исходя из ферментативного оснащения организма. [c.272]     Приведенные примеры не исчерпывают всего многообразия взаимосвязей обмена белков, нуклеиновых кислот, углеводов, липидов и других соединений. Между ними существуют более сложные, нежели простое использование в качестве субстратов, формы взаимозависимости. Так, вещества, образующиеся в процессе обмена соединений одного класса, оказывают глубочайшее влияние на обмен веществ, относящихся к другому классу. Число примеров взаимозависимости и взаимообусловленности обмена белков, нуклеиновых кислот, углеводов, липидов и других соединений огромно. Но каждый из них в отдельности подчеркивает ту или иную форму взаимосвязи обмена веществ в организме. [c.460]

    Промежуточным обменом называют обмен отдельных веществ, включая образование промежуточных продуктов, который совершается в органах и тканях организма. Промежуточный обмен отражает последовательность биохимических превращений веществ внутри организма, их материальный и энергетический баланс, локализацию этих превращений в определенных органах и тканях, взаимосвязи отдельных органов в едином процессе обмена веществ целостного организма и его колебания в зависимости от состояния центральной нервной системы. [c.211]

    Биохимия изучает процессы обмена веществ, включающие многообразные химические реакции, обеспечивающие синтез различных органических веществ — составных частей тканей организмов (процессы ассимиляции), а также реакции, приводящие к распаду органических веществ, сопровождающиеся использованием организмом их потенциальной энергии (процессы диссимиляции). Процессы ассимиляции и процессы диссимиляции взаимосвязаны и часто трудно бывает их разграничить. Совокупность процессов ассимиляции и диссимиляции составляет обмен веществ между организмами и внешней средой, являющийся одним из самых характерных особенностей проявления жизни. Так как обмен веществ лежит в основе проявления самых разнообразных функций живых организмов, биохимия, изучающая обмен веществ, является важнейшей биологической дисциплиной. [c.5]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. [c.545]

    Ферменты по химическому составу представляют собой вещества белковой природы, которые способны катализировать определенные химические процессы. Однако, в отличие от обычных катализаторов, каждый фермент может катализировать строго определенные реакции. Благодаря такой тонкой специфичности ферментативного катализа возможна строгая упорядоченность и теснейшая взаимосвязь отдельных ферментативных реакций, которые в своем закономерном сочетании создают лежащий в основе жизни биологический обмен веществ. Они выполняют в организме функции, связанные с проявлением жизни, в том числе функции пластические, энергетические, обусловливая особую. свойственную данному виду организмов, направленность обмена [c.207]

    Основными регуляторными системами организма человека являются ЦНС и гормональная, или эндокринная система. Между ними существует тесная взаимосвязь и соподчинение ЦНС управляет обменом веществ через гормональную систему, а последняя, в свою очередь, влияет на это управление. Координирующим центром этих двух систем является гипоталамус. Обе системы совместно обеспечивают регуляцию всех биохимических и физиологических процессов, имеющих отношение к мышечной деятельности. Нервная система оказывает быстрое локальное регулирующее воздействие, а эндокринная — более медленное и продолжительное. Эндокринная система осуществляет регулирующее воздействие с помощью биологически активных веществ — гормонов. [c.128]

    Многие реакции живых организмов на давление объясняются изменениями скоростей биохимических реакций под влиянием этого фактора, а не его воздействием на. процессы равновесия. Живые организмы никогда не находятся в состоянии термодинамического равновесия, и между клеткой и окружающей ее средой происходит постоянный обмен энергии и различных веществ. Более того, все внутриклеточные биохимические реакции в совокупности взаимосвязаны между собой сложным образом, так что каждая реакция в какой-то степени зависит от любой другой реакции. Вот почему влияние давления на скорости внутриклеточных реакций носит весьма сложный характер, и во многих случаях попытки рассматривать действие давления на какую-то отдельную реакцию могут привести к ошибочным представлениям. [c.140]

    Обмен веществ включает множество отдельных химических реакций, которые происходят в организме и являются основой процессов ассимиляции и диссимиляции. Все эти реакции тесно взаимосвязаны. Глубокие сдвиги, которые происходят в обмене веществ, а следовательно, н в химическом составе растительных организмов под влиянием условий внешней среды, обусловлены соответствующими изменениями в ферментных системах. Накоплено много экспериментальных данных, свидетельствующих о том, что в процессе жизнедеятельности и под влиянием изменяющихся условий ферменты образуются, трансформируются, а также утрачивают свои каталитические свойства. [c.500]

    Приведенные вьппе данные о взаимосвязи и взаимозависимости обмена белков, нуклеиновых кислот, углеводов и липидов убеждают в том что обмен веществ представляет собой стройный ансамбль многочисленных и тесно увязанных друг с другом химических процессов. Ведущая роль в этом бесчисленном множестве взаимодействий принадлежит белковым телам. Благодаря их каталитической функции осуществляется все это великое множество химических процессов распада и синтеза. С помощью нуклеиновых кислот поддерживается строгая специфичность при биосинтезе макромолекул, т. е. в конечном счете видовая специфичность в строении важнейших биополимеров. Благодаря обмену углеводов и липидов в организме постоянно возобновляются запасы АТФ—универсального донора энергии для химических преобразований. Эти же вещества поставляют простейшие органические молекулы, из которых строятся биополимеры и другие соединения. В результате совершает- [c.472]

    Особенностью обменных процессов живого организма является их большая скорость, которая обеспечивается биологическими катализаторами — ферментами. В клетках существуют целые комплексы ферментов, действие которых часто взаимосвязано таким образом, что продукт одной ферментативной реакции является исходным веществом (субстратом) другого фермента. Таким образом создаются сложные метаболические пути превращения различных веществ, приводящие к распаду сложных веществ до простых или образованию сложных белковых и других молекул. [c.28]

    В растительном организме можно определить пять основных направлений обмена веществ — углеводов, липидов, аминокислот, пуринов и пиримидинов и обмен органических кислот, которые являются основой метаболизма высокомолекулярных соединений. Между этими видами обмена и в каждом из них в постоянной взаимосвязи происходят процессы синтеза и распада, между которыми поддерживается равновесие. Это равновесие регулируется ферментными системами с активаторами и ингибиторами и контролируется генетически. [c.393]

    Альдегидо- и кетонокислоты, как и альдегиды и кетоны, способны восстанавливаться в соответствующие спирты, т. е. снова превра-шдться в оксикислоты. Эти процессы окисления и восстановления, которыми взаимосвязаны оксикислоты, альдокислоты и кетокислоты, имеют очень важное значение в обмене веществ в живых организмах. [c.312]

    Закономерность, взаимосвязь процессов обмена ве1цеств определяются прежде всего химическими и физическими свойствами веществ, входящих в состав растительного организма. Ведущая роль в этом принадлежит белкам. Они входят в состав ткани и участвуют как биокатализаторы-ферменты во всех превращениях веществ, В основе различных метаболических процессов и создании обменных и запасных фондов органических веществ в растении лежат фотосинтез и дыхаиие, [c.393]

Смотреть страницы где упоминается термин Взаимосвязь процессов обмена веществ в организме: [c.441]    [c.39]    Смотреть главы в:

Биологическая химия Изд.3 -> Взаимосвязь процессов обмена веществ в организме

Обменные процессы

© 2019 chem21.info Реклама на сайте

www.chem21.info

Обмен веществ в организмах живых существ.

Метаболизм или обмен веществ – это полный комплекс химических реакций и процессов, которые протекают в живой клетке, обеспечивающих ее жизнедеятельность, рост, деление и взаимодействие с внешней средой.

Именно правильный обмен веществ обеспечивает расщепление и усвоение молекул веществ, из которых состоят клетки или необходимых для функционирования, разрушения, обновления клеток и межклеточного вещества. Благодаря правильному метаболизму за 80 суток обновляется тканевой покров организма, белки мышечных волокон обновляются за 180 дней, клетки печени и сыворотка крови обновляется за 10 дней, а некоторые печеночные ферменты – всего за 2-4 часа.

Метаболизм неразрывно связан с процессом превращения энергии. В результате химических реакций потенциальная энергия из сложных органических молекул превращается в другие виды энергии, которая используется для всех процессов жизнедеятельности клеток. Все эти процессы протекают при участии катализаторов – ферментов. У каждого вида живых организмов метаболизм является уникальным, свойственным только этому виду. Обмен веществ каждого вида обусловлен прежде всего условиями его обитания и существования в целом.

Обмен веществ состоит из двух основных процессов, которые неразрывно связаны друг с другом и протекают одновременно:  

  • Анаболизм (ассимиляция);  
  • Катаболизм (диссимиляция).

Анаболизм (пластический обмен) – это процессы синтеза (построения) сложных органических молекул из более простых, получаемых в результате катаболизма.

Катаболические процессы – это комплекс химических реакций по расщеплению крупных молекул до более мелких, которые могли бы пройти в клетку. При этом одновременно выделяется энергия, которую организмы запасают обычно в молекулах АТФ (аденозинтрифосфорной кислоты). Катаболизм обычно протекает во время окислительных или гидролитических реакций. При этом, такие процессы протекают как при участии кислорода (дыхание, аэробный путь), так и без его участия (брожение, гликолиз – анаэробный путь).

В зависимости от типа обмена веществ существует два типа живых организмов:

1) Гетеротрофы – это организмы, которые синтезируют органические соединения за счет продуктов, которые образуются в результате катаболизма и энергии, выделяющейся в процессе этого. Начальным сырьем для образования тканей таких организмов являются простые органические вещества. Из этих соединений каждая клетка в отдельности синтезирует нужные для нее соединения. Таким образом, синтез белка может происходить на месте (гликоген синтезируется напрямую в мышцах, а не поставляется с кровью из печени).

2) Автотрофы – это организмы, которые могут совершать синтез органических соединений из углекислого газа с помощью реакций окислений (хемосинтез) и солнечного света (фотосинтез). Такими организмами являются некоторые виды бактерий и зеленые растения.

С развитием живых организмов в течение эволюции системы регуляции стали более сложными и упорядоченными. Сегодня у высокоразвитых организмов имеются дополнительные регуляторные гормональные механизмы и нервные механизмы, которые либо напрямую действуют на синтез ферментов или на сами ферменты, а также могут влиять на чувствительность клеток к тому или иному ферменту. 

www.calc.ru

Обмен веществ (метаболизм)

Обмен веществ (или метаболизм, от греческого μεταβολή — «превращение, изменение») (далее по тексту — «О. в.») — это лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме.

Немецкий философ и мыслитель Фридрих Энгельс, определяя жизнь, указывал, что её важнейшим свойством является постоянный О. в. с окружающей внешней природой, с прекращением которого прекращается и жизнь. Таким образом, обмен веществ — существеннейший и непременный признак жизни.

Все без исключения органы и ткани организмов находятся в состоянии непрерывного химического взаимодействия с другими органами и тканями, а также с окружающей организм внешней средой. С помощью метода изотопных индикаторов было установлено, что интенсивный метаболизм происходит в любой живой клетке.

С пищей в организм поступают из внешней среды разнообразные вещества. В организме эти вещества подвергаются изменениям (метаболизируются), в результате чего они частично превращаются в вещества самого организма. В этом состоит процесс ассимиляции. В тесном взаимодействии с ассимиляцией протекает обратный процесс — диссимиляция. Вещества живого организма не остаются неизменными, а более или менее быстро расщепляются с выделением энергии; их замещают вновь ассимилированные соединения, а возникшие при разложении продукты распада выводятся из организма. Химические процессы, протекающие в живых клетках, характеризуются высокой степенью упорядоченности: реакции распада и синтеза определённым образом организованы во времени и пространстве, согласованы между собой и образуют целостную, тончайше отрегулированную систему, сложившуюся в результате длительной эволюции. Теснейшая взаимосвязь между процессами ассимиляции и диссимиляции проявляется в том, что последняя является не только источником энергии в организмах, но также источником исходных продуктов для синтетических реакций.

В основе характерного для обмена веществ порядка явлений лежит согласованность скоростей отдельных химических реакций, которая зависит от каталитического действия специфических белков — ферментов. Почти любое вещество, для того чтобы участвовать в О. в., должно вступить во взаимодействие с ферментом. При этом оно будет изменяться с большой скоростью в совершенно определённом направлении. Каждая ферментативная реакция является отдельным звеном в цепи тех превращений (метаболических путей), которые в совокупности составляют метаболизм. Каталитическая активность ферментов изменяется в очень широких пределах и находится под контролем сложной и тонкой системы регуляций, обеспечивающих организму оптимальные условия жизнедеятельности при меняющихся условиях внешней среды. Таким образом, закономерный порядок химических превращений зависит от состава и активности ферментного аппарата, настраивающегося в зависимости от потребностей организма.

Для познания обмена веществ существенно изучение как порядка отдельных химических превращений, так и тех непосредственных причин, которые определяют этот порядок. О. в. складывался при самом возникновении жизни на Земле, поэтому в его основе лежит единый для всех организмов нашей планеты биохимический план. Однако в процессе развития живой материи изменения и совершенствование О. в. шли неодинаковыми путями у разных представителей животного и растительного мира. Поэтому организмы, принадлежащие к различным систематическим группам и стоящие на разных ступенях исторического развития, наряду с принципиальным сходством в основном порядке химических превращений, имеют существенные и характерные отличия. Эволюция живой природы сопровождалась изменениями структур и свойств биополимеров, а также энергетических механизмов, систем регуляции и координации метаболизм.

Схема обмена веществ

I. Ассимиляция

Особенно значительны различия в обмене веществ у представителей разных групп организмов в начальных этапах процесса ассимиляции. Как полагают, первичные организмы использовали для питания органического вещества, возникшие абиогенным путём (см. происхождение жизни); при последующем развитии жизни у некоторых из живых существ возникла способность к синтезу органических веществ. По этому признаку все организмы могут быть разделены на гетеротрофов и автотрофов (см. автотрофные организмы и гетеротрофные организмы). У гетеротрофов, к которым принадлежат все животные, грибы и многие виды бактерий, О. в. основан на питании готовыми органическими веществами. Правда, они обладают способностью усваивать некоторое, сравнительно незначительное, количество CO2, используя его для синтеза более сложных органических веществ. Однако этот процесс совершается гетеротрофами только за счёт использования энергии, заключённой в химических связях органических веществ пищи. Автотрофы (зелёные растения и некоторые бактерии) не нуждаются в готовых органических веществах и осуществляют их первичный синтез из входящих в их состав элементов. Некоторые из автотрофов (серобактерии, железобактерии и нитрифицирующие бактерии) используют для этого энергию окисления неорганических веществ (см. хемосинтез). Зелёные растения образуют органические вещества за счёт энергии солнечного[гор] света в процессе фотосинтеза — основного источника органического вещества на Земле.

Биосинтез углеводов

В процессе фотосинтеза зелёные растения ассимилируют CO2 и образуют углеводы, фотосинтез представляет собой цепь последовательно совершающихся окислительно-восстановительных реакций, в которых принимает участие Хлорофилл — зелёный пигмент, способный улавливать солнечную энергию. За счёт энергии света происходит фотохимическое разложение воды, причём кислород выделяется в атмосферу, а водород используется для восстановления CO2. На сравнительно ранних этапах фотосинтеза образуется фосфоглицериновая кислота, которая, подвергаясь восстановлению, даёт трёхуглеродные сахара — триозы. Две триозы — фосфоглицериновый альдегид и фосфодиоксиацетон — под действием фермента альдолазы конденсируются с образованием гексозы — фруктозо-дифосфата, который, в свою очередь, превращается в другие гексозы — глюкозу, маннозу, галактозу. Конденсация фосфодиоксиацетона с рядом др. альдегидов приводит к образованию пентоз. Образовавшиеся в растениях гексозы служат исходным материалом для синтеза сложных углеводов — сахарозы, крахмала, инулина, целлюлозы (клетчатки) и др.

Пентозы дают начало высокомолекулярным пентозанам, участвующим в построении опорных тканей растений. Во многих растениях гексозы могут превращаться в полифенолы, фенолкарбоновые кислоты и другие соединения ароматического ряда. В результате полимеризации и конденсации из этих соединений образуются дубильные вещества, антоцианы, флавоноиды и другие сложные соединения.

Животные и другие гетеротрофы получают углеводы в готовом виде с пищей, преимущественно в виде дисахаридов и полисахаридов (сахароза, крахмал). В пищеварительном тракте углеводы под действием ферментов расщепляются на моносахариды, которые всасываются в кровь и разносятся ею по всем тканям организма. В тканях из моносахаридов синтезируется запасной полисахарид животных — гликоген. См. углеводный обмен.

Биосинтез липидов

Первичные продукты фотосинтеза, хемосинтеза и образовавшиеся из них или поглощённые с пищей углеводы являются исходным материалом для синтеза липидов — жиров и других жироподобных веществ. Так, например, накопление жиров в созревающих семенах масличных растений происходит за счёт сахаров. Некоторые микроорганизмы (например, Torulopsis lipofera) при культивировании на растворах глюкозы за 5 часов образуют до 11% жира на сухое вещество. Глицерин, необходимый для синтеза жиров, образуется путём восстановления фосфоглицеринового альдегида. Высокомолекулярные жирные кислоты — пальмитиновая, стеариновая, олеиновая и другие, дающие при взаимодействии с глицерином жиры, синтезируются в организме из уксусной кислоты — продукта фотосинтеза или окисления веществ, образовавшихся в результате распада углеводов. Животные получают жиры также с пищей. При этом жиры в пищеварительном тракте расщепляются липазами на глицерин и жирные кислоты и усваиваются организмом. См. жировой обмен.

Биосинтез белков

У автотрофных организмов синтез белков начинается с усвоения неорганического азота (N) и синтеза аминокислот. Некоторые микроорганизмы в процессе азотфиксации усваивают из воздуха молекулярный азот, который при этом превращается в аммиак (Nh4). Высшие растения и хемосинтезирующие микроорганизмы потребляют азот в виде аммонийных солей и нитратов, причём последние предварительно подвергаются ферментативному восстановлению до Nh4. Под действием соответствующих ферментов Nh4 затем соединяется с кето- или оксикислотами, в результате чего образуются аминокислоты (например, пировиноградная кислота и Nh4 дают одну из наиболее важных аминокислот — аланин). Образовавшиеся таким образом аминокислоты могут далее подвергаться переаминированию и другим превращениям, давая все другие аминокислоты, входящие в состав белков.

Гетеротрофные организмы также способны синтезировать аминокислоты из аммиачных солей и углеводов, однако животные и человек получают основную массу аминокислот с белками пищи. Ряд аминокислот гетеротрофные организмы синтезировать не могут и должны получать их в готовом виде в составе пищевых белков.

Аминокислоты, соединяясь друг с другом под действием соответствующих ферментов, образуют различные белки (смотрите статью белки, раздел Биосинтез белков). Белками являются все ферменты. Некоторые структурные и сократительные белки также обладают каталитической активностью. Так, мышечный белок миозин способен гидролизовать аденозинтрифосфат (АТФ), поставляющий энергию, необходимую для мышечного сокращения. Простые белки, вступая во взаимодействие с другими веществами, дают начало сложным белкам — протеидам: соединяясь с углеводами, белки образуют гликопротеиды, с липидами — липопротеиды, с нуклеиновыми кислотами — нуклеопротеиды. Липопротеиды — основной структурный компонент биологических мембран; нуклеопротеиды входят в состав хроматина клеточных ядер, образуют клеточные белоксинтезирующие частицы — рибосомы. См. также азот в организме, белковый обмен.

II. Диссимиляция

Источником энергии, необходимой для поддержания жизни, роста, размножения, подвижности, возбудимости и других проявлений жизнедеятельности, являются процессы окисления части тех продуктов расщепления, которые используются клетками для синтеза структурных компонентов.

Наиболее древним и поэтому наиболее общим для всех организмов является процесс анаэробного расщепления органических веществ, осуществляющийся без участия кислорода (см. брожение, гликолиз). Позднее этот первоначальный механизм получения энергии живыми клетками дополнился окислением образующихся промежуточных продуктов кислородом воздуха, который появился в атмосфере Земли в результате фотосинтеза. Так возникло внутриклеточное, или тканевое дыхание. Подробнее см. окисление биологическое.

Диссимиляция углеводов

Основным источником запасённой в химических связях энергии у большинства организмов являются углеводы. Расщепление полисахаридов в организме начинается с их ферментативного гидролиза. Например, у растений при прорастании семян запасённый в них крахмал гидролизуется амилазами, у животных поглощённый с пищей крахмал гидролизуется под действием амилаз слюны и поджелудочной железы, образуя мальтозу. Мальтоза далее гидролизуется с образованием глюкозы. В животном организме глюкоза образуется также в результате расщепления гликогена. Глюкоза подвергается дальнейшим превращениям в процессах брожения или гликолиза, в результате которых образуется пировиноградная кислота. Последняя, в зависимости от типа обмена веществ данного организма, сложившегося в процессе исторического развития, может далее подвергаться разнообразным превращениям. При различных видах брожений и при гликолизе в мышцах пировиноградная кислота подвергается анаэробным превращениям. В аэробных условиях — в процессе дыхания — она может подвергаться окислительному декарбоксилированию с образованием уксусной кислоты, а также служить источником образования другх органических кислот: щавелево-уксусной, лимонной, цис-аконитовой, изолимонной, щавелево-янтарной, кетоглутаровой, янтарной, фумаровой и яблочной. Их взаимные ферментативные превращения, приводящие к полному окислению пировиноградной кислоты до CO2 и h3O, называются трикарбоновых кислот циклом, или циклом кребса.

Диссимиляция жиров также начинается с их гидролитического расщепления липазами с образованием свободных жирных кислот и глицерина; эти вещества могут далее легко окисляться, давая, в конечном счёте, CO2 и h3O. Окисление жирных кислот идёт главным образом путём так называемые β-окисления, т. е. таким образом, что от молекулы жирной кислоты отщепляются два углеродных атома, дающих остаток уксусной кислоты, и образуется новая жирная кислота, которая может подвергнуться дальнейшему β-окислению. Получающиеся остатки уксусной кислоты либо используются для синтеза различных соединений (например, ароматических соединений, изопреноидов и др.), либо окисляются до CO2 и h3O. См. также жировой обмен, липиды.

Диссимиляция белков начинается с их гидролитического расщепления протеолитическими ферментами, в результате чего образуются низкомолекулярные пептиды и свободные аминокислоты. Такого рода вторичное образование аминокислот происходит, например, весьма интенсивно при прорастании семян, когда белки, содержащиеся в эндосперме или в семядолях семени, гидролизуются с образованием свободных аминокислот, частично используемых на построение тканей развивающегося растения, а частично подвергающихся окислительному распаду. Происходящий в процессе диссимиляции окислительный распад аминокислот осуществляется путём дезаминирования и приводит к образованию соответствующих кето- или оксикислот. Эти последние либо подвергаются дальнейшему окислению до CO2 и h3O, либо используются на синтез различных соединений, в том числе новых аминокислот. У человека и животных особенно интенсивный распад аминокислот идёт в печени.

Образующийся при дезаминировании аминокислот свободный МН3 ядовит для организма; он связывается с кислотами или же превращается в мочевину, мочевую кислоту, аспарагин или глутамин. У животных аммонийные соли, мочевина и мочевая кислота выводятся из организма, у растений же аспарагин, глутамин и мочевина используются в организме в качестве запасных источников азота. Таким образом, одним из важнейших биохимических отличий растений от животных является почти полное отсутствие у первых азотистых отбросов. Образование мочевины при окислительной диссимиляции аминокислот осуществляется в основном с помощью так называемого орнитинового цикла, который тесно связан с другими превращениями белков и аминокислот в организме. Диссимиляция аминокислот может происходить также путём их декарбоксилирования, при котором из аминокислоты образуются CO2 и какой-либо амин или же новая аминокислота (например, при декарбоксилировании гистидина образуется гистамин — физиологически активное вещество, а при декарбоксилировании аспарагиновой кислоты — новая аминокислота — (α- или β-аланин). Амины могут подвергаться метилированию, образуя различные бетаины и такие важные соединения, как, например, холин. Растения используют амины (наряду с некоторыми аминокислотами) для биосинтеза алкалоидов.

III. Связь обмена углеводов, липидов, белков и других соединений

Все биохимические процессы, совершающиеся в организме, тесно связаны друг с другом. Взаимосвязь обмена белков с окислительно-восстановительными процессами осуществляется различным образом. Отдельные биохимические реакции, лежащие в основе процесса дыхания, происходят благодаря каталитическому действию соответствующих ферментов, т. е. белков. Вместе с тем сами продукты расщепления белков — аминокислоты могут подвергаться различным окислительно-восстановительным превращениям — декарбоксилированию, дезаминированию и др.

Так, продукты дезаминирования аспарагиновой и глутаминовой кислот — щавелево-уксусная и α-кетоглутаровая кислоты — являются вместе с тем важнейшими звеньями окислительных превращений углеводов, происходящих в процессе дыхания. Пировиноградная кислота — важнейший промежуточный продукт, образующийся при брожении и дыхании, — также тесно связана с белковым обменом: взаимодействуя с Nh4 и соответствующим ферментом, она даёт важную аминокислоту α-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, является исходным веществом для синтеза глицерина. С другой стороны, в результате окисления пировиноградной кислоты получаются остатки уксусной кислоты, из которых синтезируются высокомолекулярные жирные кислоты и разнообразные изопреноиды (терпены, каротиноиды, стероиды). Таким образом, процессы брожения и дыхания приводят к образованию соединений, необходимых для синтеза жиров и др. веществ.

IV. Роль витаминов и минеральных веществ в обмене веществ

В превращениях веществ в организме важное место занимают витамины, вода и различные минеральные соединения. Витамины участвуют в многочисленных ферментативных реакциях в составе коферментов. Так, производное витамина B1 — тиаминпирофосфат — служит коферментом при окислительном декарбоксилировании (α-кетокислот, в том числе пировиноградной кислоты; фосфорнокислый эфир витамина B6 — пиридоксальфосфат — необходим для каталитического переаминирования, декарбоксилирования и других реакций обмена аминокислот. Производное витамина А входит в состав зрительного пигмента. Функции ряда витаминов (например, аскорбиновой кислоты) окончательно не выяснены. Разные виды организмов различаются как способностью к биосинтезу витаминов, так и своими потребностями в наборе тех или иных поступающих с пищей витаминов, которые необходимы для нормального обмена веществ.

Важную роль в минеральном обмене играют Na, К, Ca, Р, а также микроэлементы и другие неорганического вещества. Na и К участвуют в биоэлектрических и осмотических явлениях в клетках и тканях, в механизмах проницаемости биологических мембран; Ca и Р — основные компоненты костей и зубов; Fe входит в состав дыхательных пигментов — гемоглобина и миоглобина, а также ряда ферментов. Для активности последних необходимы и другие микроэлементы (Cu, Mn, Mo, Zn).

Решающую роль в энергетических механизмах обмена веществ играют эфиры фосфорной кислоты и прежде всего аденозинфосфорные кислоты, которые воспринимают и накапливают энергию, выделяющуюся в организме в процессах гликолиза, окисления, фотосинтеза. Эти и некоторые другие богатые энергией соединения (см. макроэргические соединения) передают заключённую в их химических связях энергию для использования её в процессе механической, осмотической и других видов работы или же для осуществления синтетических реакций, идущих с потреблением энергии (см. также биоэнергетика).

V. Регуляция обмена веществ

Удивительная согласованность и слаженность процессов обмена веществ в живом организме достигается путём строгой и пластичной координации О. в. как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер метаболизма, сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.

Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты О. в., действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез. Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом:

  • а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и
  • б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в том числе и треониндегидратазы).

Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.

Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых «настроен» на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента. Таким образом, в клетки, полинуклеотидных цепочках ДНК заключены «инструкции» для синтеза самых разнообразных ферментов, причём образование каждого из них может быть вызвано воздействием сигнального метаболита (индуктора) на соответствующий репрессор (подробнее см. молекулярная генетика, оперон).

Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и другие субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран. Значительная часть ферментов связана с мембранами, в которые они как бы «вмонтированы». В результате взаимодействия того или иного фермента с липидами и другими компонентами мембраны конформация его молекулы, а следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе. Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и обмена веществ в целом.

Важнейшим средством, с помощью которого осуществляется регуляция обмена веществ в живых организмах, являются гормоны. Так, например, у животных при значительном понижении содержания caxapa в крови усиливается выделение адреналина, способствующего распаду гликогена и образованию глюкозы. При избытке сахара в крови усиливается секреция инсулина, который тормозит процесс расщепления гликогена в печени, вследствие чего в кровь поступает меньше глюкозы. Важная роль в механизме действия гормонов принадлежит циклической аденозинмонофосфорной кислоте (цАМФ). У животных и человека гормональная регуляция Обмен веществ. тесно связана с координирующей деятельностью нервной системы (см. нервная регуляция).

Благодаря совокупности тесно связанных между собой биохимических реакций, составляющих обмен веществ, осуществляется взаимодействие организма со средой, являющееся непременным условием жизни. Фридрих Энгельс писал: «Из обмена веществ посредством питания и выделения… вытекают все прочие простейшие факторы жизни…» («Анти-Дюринг», 1966, с. 80). Таким образом, развитие (онтогенез) и рост организмов, наследственность и изменчивость, раздражимость и высшая нервная деятельность — эти важнейшие проявления жизни могут быть поняты и подчинены воле человека на основе выяснения наследственно обусловленных закономерностей обмена веществ и сдвигов, происходящих в нём под влиянием меняющихся условий внешней среды (в пределах нормы реакции данного организма). См. также биология, биохимия, генетика, молекулярная биология и литературу при этих статьях. (биохимик, доктор биологических наук, профессор (1944), член-корреспондент АН СССР[en] Вацлав Леонович Кретович)

VI. Нарушения обмена веществ

Любое заболевание[en] сопровождается нарушениями обмена веществ. Особенно отчётливы они при расстройствах трофической и регуляторной функций нервной системы и контролируемых ею желёз внутренней секреции. Метаболизм нарушается также при ненормальном питании (избыточный или недостаточный и качественно неполноценный пищевой рацион, например недостаток или избыток витаминов в пище и др.). Выражением общего нарушения О. в. (а тем самым и обмена энергии), обусловленного изменением интенсивности окислительных процессов, являются сдвиги в основном обмене. Повышение его характерно для заболеваний[en], связанных с усиленной функцией щитовидной железы, понижение — с недостаточностью этой железы, выпадением функций гипофиза и надпочечников и общим голоданием. Выделяют нарушения белкового, жирового, углеводного, минерального, водного обмена; однако все виды обмена веществ так тесно взаимосвязаны, что подобное деление условно.

Нарушения обмена веществ выражаются в недостаточном или избыточном накоплении веществ, участвующих в обмене, в изменении их взаимодействия и характера превращений, в накоплении промежуточных продуктов метаболизма, в неполном или избыточном выделении продуктов О. в. и в образовании веществ, не свойственных нормальному обмену. Так, диабет сахарный характеризуется недостаточным усвоением углеводов и нарушением их перехода в жир; при ожирении происходит избыточное превращение углеводов в жир; Подагра связана с нарушением выделения из организма мочевой кислоты. Избыточное выделение с мочой мочекислых, фосфорнокислых и щавелевокислых солей может привести к выпадению этих солей в осадок и к развитию почечнокаменной болезни. Недостаточное выделение ряда конечных продуктов белкового обмена вследствие некоторых заболеваний почек приводит к уремии.

Накопление в крови и тканях ряда промежуточных продуктов обмена веществ (молочной, пировиноградной, ацетоуксусной кислот) наблюдается при нарушении окислительных процессов, расстройствах питания и авитаминозах; нарушение минерального обмена может привести к сдвигам кислотно-щелочного равновесия. Расстройство обмена холестерина лежит в основе атеросклероза и некоторых видов желчнокаменной болезни. К серьёзным расстройствам обмена веществ следует отнести нарушение усвоения белка при тиреотоксикозе, хроническом нагноении, некоторых инфекциях; нарушение усвоения воды при диабете несахарном, солей извести и фосфора при рахите, остеомаляции и других заболеваниях костной ткани, солей натрия — при аддисоновой болезни.

Диагностика нарушений обмена веществ

Диагностика нарушений обмена веществ основывается на исследовании газообмена, соотношения между количеством того или иного поступающего в организм вещества и выделением его, определении химических составных частей крови, мочи и других выделений. Для изучения нарушений метаболизма вводят изотопные индикаторы (например, радиоактивный йод — главным образом 131I — при тиреотоксикозе).

Лечение нарушений обмена веществ направлено главным образом на устранение причин, их вызывающих. См. также «молекулярные болезни», наследственные заболевания и литературу при этих статьях. (С. М. Лейтес)

Подробнее об обмене веществ читайте в литературе:

  • Энгельс Ф., Диалектика природы, Маркс Карл, Энгельс Ф., Сочинения, 2 издание, том 20;
  • Энгельс Ф., Анти-Дюринг, там же;
  • Вагнер P., Митчелл Г., Генетика и обмен веществ перевод с английского М., 1958;
  • Кристиан Бемер Анфинсен. Молекулярные основы эволюции, перевод с англ., М., 1962;
  • Жакоб Франсуа, Моно Жак. Биохимические и генетические механизмы регуляции в бактериальной клетке, [перевод с франц.], в книге: Молекулярная биология. Проблемы и перспективы, Москва, 1964;
  • Опарин Александр Иванович. Возникновение и начальное развитие жизни, М., 1966;
  • Скулачев Владимир Петрович. Аккумуляция энергии в клетке, М., 1969;
  • Молекулы и клетки, перевод с английского, в. 1 — 5, М., 1966 — 1970;
  • Кретович Вацлав Леонович. Основы биохимии растений, 5 издание, М., 1971;
  • Збарский Борис Ильич, Иванов И. И., Мардашев Сергей Руфович. Биологическая химия, 5 изд., Л., 1972.

Найти ещё что-нибудь интересное:

www.doctorate.ru

Обмен веществ

Организационный момент

Сообщение темы и цели урока

Изучение нового материала

(Актуализация знаний)

( Обмен веществ – основное свойство живых существ)

(Энергетический и пластический обмен)

( Этапы обмена веществ)

Работа в малых группах и итоговое совместное заполнение таблицы. (13 минут)

Закрепление

Подведение итогов урока

Домашнее задание

Здравствуйте, ребята садитесь. Дежурный кто отсутствует?

С сегодняшнего урока мы с вами приступаем к изучению обмена веществ и энергии.

На уроке мы познакомимся с понятием обмена веществ, узнаем из как процессов состоит обмен веществ. Рассмотрим этапы обмена веществ, и обмен белков, жиров, углеводов, минеральных веществ и воды.

Откройте тетради и запишите сегодняшнее число и тему урока.

Живой мир вокруг нас разнообразен, но всех живых существ отличает от неживой природы наличие особых признаков.

Вспомните основные признаки живых организмов.(Питание, дыхание, выделение – обмен веществ, раздражимость, подвижность, размножение, рост и развитие.)

Почему питание, дыхание, выделение продуктов жизнедеятельности выделены среди других признаков живого? ( Эти процессы взаимосвязаны и в совокупности представляют единое целое обмен веществ)

Вспомните, что называется питанием, дыханием, выделением.( Питание – процесс получения питательных веществ из окружающей среды. Дыхание – процесс поглощения кислорода с выделением энергии. Выделение – вывод из организма не нужных опасных веществ образовавшихся в ходе жизнедеятельности.)

Остаются ли неизменными вещества, поступившие из внешней среды в организм? Если изменяются, то какие преобразования они притерпевают?

(Вещества претерпевают изменения, они расподаются до более простых и всасываются в кровь далее часть их превращается в строительный материал для организма а часть их используется для получения энергии.)

Итак, обмен веществ и энергии – одно из основных свойств живого, обмен веществами и энергией с окружающей средой (метаболизм (от греч. μεταβολή — «превращение, изменение»)включающее процессов питания дыхания и выделения представляет собой совокупность протекающих в живых организмах биохимических превращений веществ и энергии.

Различие между живой и неживой природой заключается в особом строении живого существа и в специфических химических процессах, постоянно происходящих между организмом и внешней средой. Совокупность этих процессов представляет собой основу жизни — обмен веществ. Любой живой организм, в том числе и человек, — открытая система, которая потребляет из окружающей среды различные вещества и использует их в качестве строительного материала или как источник энергии, выделяя в окружающую среду продукты жизнедеятельности и энергию. Благодаря обмену веществ происходит расщепление и синтез молекул, входящих в состав клеток, разрушение и обновление клеточных структур и межклеточного вещества. Обмен веществ неотделим от процессов превращения энергии: энергия химических связей сложных органических молекул в результате химических превращений переходит в другие виды энергии, используемой на синтез новых соединений, для совершения работы, образования тепла и др.

Обмен веществ делится на два взаимосвязанных и единовременно протекающих процесса – пластический и энергетический обмен.

В среднем у человека каждые 80 дней меняется половина всех тканевых белков; ферменты печени (в ней идут особенно интенсивные реакции) обновляются через 2-4 часа, а некоторые — через несколько десятков минут. Подумайте каким образом это возможно, и как по-вашему можно назвать такой обмен веществ пластический или энергетический? ( Поступающие питательные продукты идут на строительство организма, пластический обмен)

Пластический обмен – процесс, в результате которого питательные вещества, поступающие в клетку, идут на «строительство» утраченных частей, на создание новых клеток, происходит рост и развитие не только клеток, но и всего организма.

Запишите определение. Пластический обмен – совокупность процессов приводящих к усвоению веществ и накоплению энергии.

Энергия необходима для протекания всех процессов. Часть поступающих в организм органических веществ распадается с выделением энергии, данный процесс называется энергетическим обменом.

В ходе работы на доске изображается схема.

Метаболизм

Энергетический Пластический

обмен - распад, обмен - синтез

расщепление сложных сложных органических

органических веществ из простых.

веществ до простых

Пластический обмен — это процесс усвоения организмом веществ, которые он получает из окружающей среды. Совокупность реакций биосинтеза, протекающих в клетках организма называется ассимиляцией. Но реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, основой которого является диссимиляция - совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. В свою очередь диссимиляция невозможна без ферментов, образующихся в ходе ассимиляционных процессов пластического обмена. В различные моменты жизни организма один из видов обмена может преобладать. Например, в период роста и развития организма наблюдается значительное усиление обоих процессов, но с усилением ассимиляции.

Организм животных и человека получает готовые органические вещества с пищей. Но чтобы эти соединения могли включиться в обмен; они должны быть расщеплены на элементарные части. Этот процесс и осуществляется, как вы знаете, в системе органов пищеварения. Пищеварение, транспортировка питательных веществ кислорода есть лишь подготовительная фаза обмена веществ. Создание специфических для организма веществ и структур, как и биологическое окисление органических веществ, обеспечивающих организм энергией, происходит в клетках тела и осуществляется по программе, заложенной в их наследственном аппарате.

Давайте подробнее выясним, из каких этапов складывается обмен веществ.

Зарисуйте с доски схему себе в тетради.

Схема «Этапы обмена веществ»

1Поступление

веществ из

окружающей 2 Преобразование

среды веществ и энергии.

3 Использование 4 Удаление

веществ в

окружающую

среду

1 этап. Поступление питательных веществ и энергии из внешней среды.Что получает организм из внешней среды? Что называется питательными веществами? ( Организм получает с продукты питания питательные вещества. Питательные вещества это белки, жиры, углеводы, мин соли, витамины.)

2 этап. Преобразования этих веществ и энергии внутри организма.

Где начинается расщепление, под действием чего и до чего расщепляются белки, жиры и углеводы?

3 этап. Использование организмом положительных компонентов данных преобразований.

Аминокислоты всасываются в кровь и разносятся ко всем органам. Через мембраны клеток органов аминокислоты проникают в них, и там, в рибосомах из нужной комбинации аминокислот создаются белки, свойственные данным клеткам: в мышцах – мышечные белки человеческого организма, в нейронах – белки свойственные нервным клеткам. Образование белков из аминокислот происходит в рибосомах.

Жирные кислоты и глицерин через кровь, и лимфу поступают в клетки, где происходит образование жиров свойственных человеку. Избыток жира ненужных для клеточных процессов, откладывается в запас в разных органах.

Глюкоза всасывается в кровь и при избытке откладывается в печени в виде гликогена. Если в крови содержится незначительное количество, это способствует переходу гликогена в глюкозу и поступление ее в сосудистое русло.

4 этап. Выброс из организма ненужных компонентов преобразований во внешнюю среду.

Конечными продуктами обмена веществ является вода, углекислый газ, аммиак, которые удаляются через кожу, печень, органы дыхания.

Итак, мы узнали, обмен веществ (метаболизм) сложный процесс включающий в себя пластический (ассимиляцию) и энергетический (диссимиляцию) обмены, сейчас выясним какие (питательные) вещества участвуют в обмене веществ и какое значение они имеют для человеческого организма.

Обмен наиболее важных веществ рассмотрим, заполнив таблицу:

«Обмен веществ».

Обмены веществ

Функ- ции в-в. в орг.

Продукты сод. в-ва

Суточная потребность

Железы регулирующие обмен в-в.

Последствия нарушения обмена в-в

1.Обмен белков

2.Обмен углеводов

3.Обмен жиров

4.Обмен минеральных солей

5.Обмен воды.

Ребята разделитесь на 5 групп. Каждая группа будет работать с текстом и выделит в нем функции веществ питательных веществ, продукты питания в которых содержаться питательные вещества, суточная потребность, железы регулирующие обмен данных питательных веществ, и последствия нарушения обмена веществ и внесет их в таблицу. На выполнение отводится 5 минут. После выполнения задания от каждой группы выходит один выступающий который заносит данные в таблицу на доске, и все вместе заполняем таблицу. Под таблицей нужно написать вывод. В конце урока тетради выборочно будут проверены и выставлены оценки.

Вывод после таблицы: Белки, жиры, углеводы, минеральные соли и вода играют огромную роль в обмене веществ и являются незаменимыми компонентами питания. Особую роль в энергетическом обмене играют углеводы и жиры, на ряду с другими питательными веществами и водой принимают участие в пластическом обмене. Обмен веществ контролируется эндокринной системой. Случаи нарушения обмена ведут к тяжелым последствиям для здоровья.

Тексты для учеников.

Текст №1 Обмен белков

Белки. В начале прошлого столетия стало известно, что из всех тканей живого и растительного мира можно выделить вещества, по своим свойствам очень похожие на белок куриного яйца. Выяснилось, что они близки друг к другу и по составу. Поэтому им и было дано общее название — белки. Затем появился термин «протеины», от греческого слова «протос» - «первый, важнейший», что указывает на первостепенную роль белка. Белки - это очень сложные высокомолекулярные соединения. Молекула воды состоит всего из трех атомов: одного атома кислорода и двух атомов водорода; молекула же белка состоит из многих десятков и сотен тысяч атомов. В ее состав входят азот, углерод, водород, кислород и некоторые другие элементы. Если нагреть в присутствии кислоты какой-либо белок, то он расщепляется на более простые составные части, названные аминокислотами. В природе есть очень много разнообразных белков и трудно найти два похожих друг на друга. Между тем состоят они из небольшого количества аминокислот — всего около 20. Белковый обмен в организме происходит постоянно и очень быстро. О его скорости можно судить по обмену азота. Определяя количество азота, введенного с пищей и выведенного из организма, можно установить суточный азотный баланс. Если количество вводимого и выделяемого азота одинаково, то говорят об азотном равновесии. Когда азота вводится больше, чем выделяется, то налицо положительный азотный баланс. Чаще это бывает у детей, когда идет рост организма, или у людей, выздоравливающих после тяжелой болезни. Но бывает, что азота выводится больше, чем вводится, — это отрицательный азотный баланс. Такое состояние наблюдается при голодании или при инфекционных заболеваниях. В зависимости от набора аминокислот, входящих в молекулы белка, белки делятся на полноценные, содержащие необходимые аминокислоты, и неполноценные, не содержащие некоторые из них. Полноценные белки преимущественно животного происхождения (мясо, рыба), неполноценные — растительного, хотя белки бобовых растений содержат полноценный белок; Белки, поступившие с пищей в организм, под воздействием ферментов пищеварительного тракта распадаются до аминокислот, которые всасываются в кровь и разносятся ею по всему организму. В клетках органов и тканей из них синтезируются белки, свойственные человеку. Не использованная часть белков подвергается распаду и удаляется из организма, а освобождающаяся энергия используется в других реакциях (энергетическая функция белков). Белки необходимы не только для построения клеточных структур (строительная функция), но являются составной частью ферментов, гормонов и некоторых других веществ. Белки входят в состав ферментов в качестве катализаторов многих реакций (каталитическая функция) и антител (защитная функция). Конечными продуктами распада белков в организме являются вода, углекислый газ и азотсодержащие вещества (аммиак, мочевая кислота и др.). Продукты распада белков выводятся из организма через органы выделения. Белки в организме в запас не откладываются (или почти не откладываются). В белках в среднем содержится 16 % азота, Т.е. вес белков в 6,25 раза превышает вес имеющегося в них азота (расчет на 100 г белка). Полученное количество азота умножают на 6,25 и получают количество белка в граммах. Суточная потребность в белках — в среднем 100-118 г; она зависит от возраста, характера профессии и других условий. Длительный недостаток белков вызывает тяжелые нарушения в организме: задержку роста и развития у детей, изменения в ферментативных системах организма, в железах внутренней секреции и др. Положительный азотистый баланс у взрослого человека может быть при росте новообразований — росте клеток, не свойственных организму. Если вовремя обнаружить этот процесс, то возможно своевременное лечение.

Текст № 2 Обмен углеводов

Углеводы — вещества, состоящие из углерода, водорода и кислорода. Они широко распространены в растительном мире. Это основной источник энергии в нашем организме (они дают 75 % всей необходимой нам энергии). Углеводы делятся на простые и сложные, С пищей получаем мы и те и другие, причем простые сразу же всасываются в кровь, а сложные вначале должны расщепиться. Сложные углеводы - это крахмал, тростниковый и свекловичный сахар, простые — виноградный сахар, или глюкоза, фруктоза и др. Высокомолекулярные соединения углеводов — полисахариды не уступают по своей сложности белкам. Они входят в состав соединительной ткани, костей и хрящей. Кроме того, полисахариды играют очень большую роль в борьбе организма с инфекционными заболеваниями. К полисахаридам относится широко распространенное в животных тканях вещество - гепарин, который предохраняет кровь от свертывания. Сложные углеводы, поступающие в организм с пищей, расщепляются в пищеварительном тракте до моносахаридов, которые поступают в кровь, а затем - в печень, где из глюкозы синтезируется гликоген. По мере надобности он снова превращается в глюкозу, которая и разносится по организму кровью. Содержание глюкозы в крови поддерживается на одном уровне (около 0,1 %). Печень регулирует содержание сахара в крови: в ней содержится около 300 г углеводов в виде гликогена. При поступлении значительного количества сахара или глюкозы, (150—200 г) с пищей уровень сахара в крови повышается (пищевая гиперглйкемия). Избыток сахара выводится с мочой, т.е. в моче появляется глюкоза — наступает глюкозурия. При нарушении внутрисекреторной деятельности поджелудочной железы наступает заболевание, носящее название сахарной болезни, или сахарного диабета: При сахарном диабете уровень сахара в крови повышается и начинается усиленное выделение сахара с мочой. Гликоген откладывается не только в печени, он может накапливаться в мышцах. При необходимости глюкоза поступает в кровь, как из гликогена, так и из гликогена, содержащегося в мышцах. Глюкоза не только структурный компонент цитоплазмы клеток, но и необходимый компонент их роста (источник энергии), она очень важна для работы нервной системы (гликоген откладывается ив нервных клетках). Если концентрация сахара в крови Понизится дот 0,04%, то начинаются судороги, бред, потеря сознания и т. д. — нарушается деятельность центральной нервной системы. Достаточно такому больному дать поесть обычного сахара или ввести в кровь глюкозу, как все нарушения исчезают. Резкое и длительное понижение сахара в крови — гипогликемия может повлечь более резкие нарушения деятельности организма и привести к смерти; При недостаточном поступлении углеводов с пищей они могут образовываться из белков и жиров.Углеводы легко распадаются и являются главным источником энергии в организме, особенно при физических нагрузках. Суточная потребность человека в углеводах в среднем составляет 450—500 г. Центр регуляции содержания сахара в крови находится в продолговатом и промежуточном (подбугровая область) мозге. Высшие центры находятся в коре больших полушарий. Адреналин — гормон мозгового слоя надпочечников — способствует превращению гликогена в глюкозу и усиливает окислительные процессы в клетках. Его действие противоположно инсулину, который способствует проникновению глюкозы в клетки и синтезу гликогена. В регуляции углеводного обмена также принимают участие и другие гормоны: гормоны коры надпочечников, передней доли гипофиза и щитовидной железы.

Текст № 3 Обмен жиров

Жиры — это в первую очередь энергетический материал; при окислении жиров выделяется в 2 с лишним раза больше энергии, чем при окислении такого же количества углеводов и белков: при окислении 1 г жира выделяется 9,3 ккал тепла, 1 г углеводов - 4,1 ккал, 1 г белка — 4,1 ккал. В пищеварительном тракте жир расщепляется на жировые кислоты и глицерин. Образующийся из жиров глицерин легко всасывается, а жирные кислоты всасываются лишь только после омыления. Проходя через слизистую оболочку кишечника и всасываясь в кровь, они вновь соединяются друг с другом и образуют новый, свойственный данному организму жир. Жир — необходимая составная часть клеток. В организме он находится также в виде жироподобных веществ — мелоидов, Которые входят в состав нервной ткани, клеточных мембран и некоторых гормонов. Невостребованные организмом количества жира откладываются в так называемых «жировых депо» — в подкожной клетчатке, сальнике, околопочечной клетчатке, в области таза. Жировая клетчатка обеспечивает теплоизоляцию нашего организма и служит амортизатором. Последнее видно из такого примера: мы не замечаем тяжести своего тела, когда стоим. Большую роль в этом играют естественные жировые подушки, которые находятся в области сводов стопы и принимают на себя, амортизируют, весь наш вес. В этом вы легко убедитесь, если станете на колени: очень быстро тяжесть тела даст о себе знать сильной болью. Жировая клетчатка есть только у теплокровных животных. Особенно она развита у тюленей, моржей, белых медведей, китов. У холоднокровных — лягушек, рыб ее нет. Значительное отложение жира в теле — признак нарушения обмена веществ. У тучного человека обмен веществ протекает медленнее, чем у худощавого. Ожиревший человек теряет бодрость и жизнерадостность, становится вялым, неинициативным. Состав пищевого жира неоднороден, и разные жиры имеют разную биологическую ценность. Для человека наиболее целесообразно содержание жира в пище от 1 до 1,25 г на килограмм веса. Это значит, что если человек весит 70 кг, то он доложен э день употреблять от 70 до 100 г жира, а так как жир входит в состав почти каждого пищевого продукта, то в эту норму включается общее количество жиров, поступивших в организм во всех видах. Половина потребляемых жиров должна быть животного, а половина—растительного происхождения. Это важно потому, что, как мы уже говорили, все жиры при расщеплении в пищеварительном тракте распадаются на жирные кислоты и глицерин. Жирных кислот два вида: насыщенные и ненасыщенные.

Все жиры содержат и те и другие, но в животных жирах больше насыщенных, растительных, наоборот, больше ненасыщенных жирных кислот. Исследования последних лет показали, что ненасыщенные жирные кислоты имеют важное значение для организма. Они повышают его сопротивляемость различным инфекциям, снижают чувствительность к радиоактивному излучению, входят в соединение с холестерином (органическим веществом, которое синтезируется в основном самим организмом) и препятствуют его отложению в стенках сосудов, предупреждая болезнь сосудов-атеросклероз. Из ненасыщенных жирных кислот особенно большое значение имеют три: линолевая, линоленовая и арахидоновая. Первые две содержатся в большом количестве вы конопляном, льняном и подсолнечном масле, а третья (ее называют витамином F) — главным образом в животном жире - свином сале и яичном желтке. Из всех трех ненасыщенных жирных кислот только арахидоновую организм может синтезировать при наличии линолевой кислоты и витаминов группы В. Если жир полностью исключить из пищи, организм будет синтезировать его из белков и углеводов. При голодании из жиров образуются углеводы, используемые в качестве источника энергии. В регуляции жирового обмена: большую роль играет центральная нервная система, а также многие железы внутренней секреции (половая, гипофиз, щитовидная, над-почечники).

Рассказ об обмене минеральных веществ и воды.

Минеральные соли. Организму нужны не только белки, жиры и углеводы, ему необходимы также минеральные соли и вода. Почти вся периодическая система Менделеева представлена в клетках нашего организма, однако роль и значение некоторых элементов в обмене веществ до сих пор ещё недостаточно изучены. Что же касается воды и минеральных солей, то выяснено, что они важные участники процесса обмена веществ в клетке. Вода и различные соли входят в состав клетки, без них обмен веществ в клетке нарушается. В организме больших запасов солей нет, поэтому необходимо обеспечить их регулярное поступление. Сделать это нетрудно, так как в состав пищевых продуктов входит большинство минеральных веществ. Больше других солей мы употребляем поваренную соль. Она состоит из натрия и хлора. Натрий участвует в регулировании количества воды в организме, а хлор, соединяясь с водородом, образует соляную кислоту желудочного сока, который очень важен для пищеварения. Недостаточное улотребление поваренной сои приводит к усиленному выделению из организма воды и недостаточному образованию соляной кислоты желудочного сока. При употреблении же большого количества поваренной соли вода задерживается в организме, и могут появиться отеки. Калий — это один из важнейших элементов, содержащихся в клетке. Он необходим для поддержания нормальной возбудимости нервной и мышечной ткани. Вместе с натрием он способствует также регулированию содержания воды в тканях. Соли калия есть в картофеле, бобовых растениях, капусте и других овощах. Соли кальция и фосфора нужны для нормального развития костной ткани, фосфор очень важен и для нервной ткани. Кальций в большом количестве содержится в молоке, твороге, сыре, рыбе. Соотношение солей калия и кальция важно для нормальной деятельности мышцы сердца. При их отсутствии или недостатке сердечная деятельность замедляется, а вскоре полностью прекращается. Для всех клеток необходимо регулярное поступление в организм солей магния. Этот элемент, благодаря которому осуществляется проводимость по волокнам нервной систе¬мы, регулирует просвет кровеносных сосудов, а также работу кишечника. Солей магния много в печени, бобах, горохе, соевой и овсяной муке, ржаном хлебе. Железо входит в состав гемоглобина - вещества, которое переносит кислород из лег¬ких к клетками тканям. Всего в организме содержится 3 г железа, из которых 2,5 г входит в состав гемоглобина. При недостатке железа развивается малокровие. Из пищевых продуктов наиболее богаты железом яичный желток, мясо, фрукты я овощи.

Фтор входит в состав зубной эмали, поэтому у людей, живущих в тех местностях, где в питьевой воде его мало, чаще портятся зубы, вод является жизненно необходимым микроэлементом. Он участвует в синтезе гормонов щитовидной железы. При дефиците йода постепенно развивается патология щитовидной железы (известна под названием «зоб»). Большое количество йода содержится в морепродуктах как животного, так и растительного происхождения. Медь и ее соли участвуют в процессах кроветворения. При дефиците этого элемента в организме железо плохо используется по своему прямому назначению, в результате чего развивается малокровие. В сутки человеку требуется до 10 г поваренной соли, 1 г калия, 0,3 г магния, 1,5 г фос\фора, 0,8 г кальция, 0,012 г железа, 0,001 мг меди, 0,0003 г марганца, 0,00003 г йода. Соли распределены в разных клетках и тканях организма неравномерно. Так, солей натрия много содержится в плазме и межклеточной - жидкости; солей калия в клетках больше, чем в жидких средах организма; кости содержат много кальция и фосфора; гемоглобин — медь и железо, а клетки щитовидной железы — йод. Поскольку минеральные вещества выводятся из организма постоянно, они должны быть.в равном количестве восполнены с приемом пищи. Отсутствие солей в пищевом рационе может привести к смерти быстрее, чем полное голодание.

Вода и минеральные соли не являются источниками энергии и питательными веществами, но их роль чрезвычайно важна. Вода составляет до 65 % веса организма, а у детей — до 80 %. Без пищи, но при наличии воды (ее потреблении) человек может обходиться 40—50 дней, а без воды погибнет через несколько дней. Вода участвует во всех обменных процессах. Все питательные вещества и соли могут всосаться в кровь только растворенными в воде. И все химические процессы в клетках возможны лишь в присутствии воды. Вода участвует в регуляции температуры тела: выделяясь с потом, она испаряется и, охлаждая тело, предохраняет его от перегревания. Потребность в воде в среднем составляет 2-2*5 л в сутки. Эта потребность удовлетворяется приблизительно так: 1 л в виде питья, 1 л содержится в пище и 250-300 мл образуется в организме человека в результате химических превращений, происходящих во всех клетках и тканях. Выводится вода из организма почками, потовыми железами и легкими. Количество выпитой и выделенной воды приблизительно одинаково. Правда, потребность в ней часто зависит от 1 качества и количества пищи, температуры окружающего воздуха и т.д.

Человеку следует употреблять столько жидкости, Сколько надо, чтобы покрыть весь ее расход, иначе произойдет обезвоживание организма, и наступят серьезные нарушения жизнедеятельности. При длительной нехватке воды страдает нервная- система, появляются психические расстройства. Периоды полной апатии и сонливости сменяются зрительными и слуховыми галлюцинациями и судорогами. Нарушается деятельность жизненно важных нервных центров — дыхательного и сердечно-сосудистого. Если эти явления нарастают, может наступить смерть,

Здоровый человек не должен ограничивать себя в питье, но полезно пить часто и понемногу. Выпивать сразу много жидкости вредно — ведь вся жидкость всасывается в кровь, и, пока ее излишек не будет выведен почками, сердца работает с излишней нагрузкой.

Мы сегодня с вами познакомились с темой обмена веществ и энергии. Выясним насколько вы поняли учебный материал. Я называть вам утверждение, а вы будите говорить верно, или не верно оно, и обосновывать свою точку зрения.

1.Обмен веществ происходит между внешней средой и организмом. Организм замкнутая система? (нет, происходит взаимодеиствие с внешней средой система открытая)

2. Результатом пластического обмена является синтез сложных органических веществ.

3. Распад органических веществ сопровождается накоплением энергии. (нет)

4. Человеческий организм получает энергию с пищей.

5. В результате энергетического обмена происходит накопление вещества. (нет)

6. Строится в клетках человека из аминокислот углеводы? (нет, белки)

7. Основное значение воды для клеток организма среда для биохимических реакций?

Спасибо всем за активное участие на уроке, выставим заслуженные оценки.

§ 36 читать, записи в тетради учить; вопросы на стр. 187-188. Приготовить сообщение на тему: История открытия витаминов.


Смотрите также

 
ЕВРОМЕД - лечебно-диагностический центр | Тюмень, ул. М. Горького, д. 44, тел. /3452/ 507-543
 
Медицинские услуги в ЛПЦ «Евромед» оказываются платно и по полисам добровольного медицинского страхования.*

* Медицинская помощь без взимания платы Вам может быть оказана в лечебно-профилактических учреждениях по месту жительства:
В рамках программы государственных гарантий бесплатного оказания гражданам медицинской помощи (утверждена Постановлением Правительства Российской Федерации от 19 декабря 2015 г. №1382);
По территориальной программе государственных гарантий бесплатного оказания гражданам медицинской помощи (утверждена постановлением Правительства Тюменской области от 28 декабря 2009 г. N 377-п)
Содержание, карта сайта.