лечебно-диагностический центр
тел. регистратуры: /3452/ 507-543
адрес: Тюмень, ул. М.Горького 44, 4 этаж
пн. - чт. с 9:00 до 17:00, пт. с 9:00 до 16:00,
сб. с 9:00 до 13:00
специалисты

наша лицензия

cанитарно- эпидемиологическое заключение

Функция эритроцитов в крови человека


Функции эритроцитов – транспортировка кислорода и еще 5 важных предназначений красных кровяных телец

Эритроциты или красные кровяные тельца являются самыми многочисленными из высокоспециализированных клеток крови. Функции эритроцитов обширны, но главная из них состоит в том, что они насыщают кислородом ткани организма, возвращая двуокись углерода назад, в легкие.

Что такое эритроциты?

Даже те, кто далек от медицины, иногда задаются вопросами: что такое эритроциты в крови? Для чего они нужны? Наравне с тромбоцитами и лейкоцитами эти кровяные клетки образуются в красном костном мозге позвоночных животных и в том числе человека. Они являются самыми многочисленными и участвуют в жизнедеятельности всех систем, способствуя перемещению кислорода по тканям и органам. Из-за своей формы и уникальной пластичности эритроциты могут легко двигаться по капиллярам, облегчая газообмен.

Строение эритроцитов

Строение и функции эритроцитов делают их пластичными, легко деформирующимися. Жидкое содержимое клеток – цитоплазма – богата гемоглобином, который содержит двухвалентный атом железа, связывающий кислород. Этот же пигмент придает тельцам красный цвет. Эритроцитарные клетки имеют дисковидную форму и не имеют ядра, которое в процессе созревания утрачивается. Состав красных телец следующий:

  • сетчатая строма;
  • заполненная гемоглобином ячейка;
  • плотная оболочка.

Строение эритроцитов человека упрощенное: внутри находится мембрана, напоминающая сетку, тогда как плазматические оболочки лейкоцитов и тромбоцитов более сложные. Мембрана красных телец особенная – она непроницаема для катионов (за исключением калия), но хорошо пропускает анионы хлора, молекулы кислорода и углекислого газа.

Как образуются эритроциты в крови

Как образуются эритроциты? Происходит разрастание ткани путем размножения одной клетки, называемое пролиферацией. После этого стволовые клетки, как родоначальницы кроветворения, образуют крупное тельце с ядром, которое по мере роста эритроцита утрачивается. Попадая в кровяное русло, тельце трансформируется в готовый эритроцит. Процесс занимает до 3 часов, и красные клетки формируются в организме без перерыва.

Каждую секунду образуется более 2 млн эритроцитов в костном мозге позвоночника, черепа и ребер, кроме этого – в окончаниях рук и ног (у детей). Циркулируя в крови 3-4 месяца (около 110 дней), эритроциты поглощаются макрофагами и разрушаются в селезенке и печени. Небольшая часть их подвергается фагоцитозу – захватыванию твердыми частицами клеток – в сосудистом русле. Перенос кислорода по организму и участие в переносе углекислого газа – центральные функции эритроцитов. Производство клеток начинается на пятом месяце внутриутробного развития.

Как выглядят эритроциты?

Строение эритроцитов связано с выполняемой ими функцией, и внешне они отличаются от других кровяных клеток, циркулирующих в организме. Они имеют другую – особенную – форму и размеры. По природе кровяные тельца наделены своеобразными чертами – крохотный размер, форма приплюснутого диска, отсутствие ядра. Это необходимо для того, чтобы быстрее справляться с транспортировкой газа в крови.

Форма эритроцитов

Красные кровяные тельца представляют собой сплюснутый двояковыгнутый диск (дискоцит). Внутриклеточное пространство увеличено за счет неимения мембранных перегородок и ядра, которого лишены зрелые эритроциты всех млекопитающих. Форма эритроцитов человека увеличивает и суммарную площадь их поверхности. Внутри телец присутствует повышенный объем белкового пигмента гемоглобина, связывающего молекулы кислорода и углекислого газа.

Специфическая форма повышает эффективность основной функции всех эритроцитов. Однако вся масса кровяных телец неоднородна. Вместе с клетками правильной формы двояковыгнутого диска встречаются и другие, процент их из общего числа невелик (менее 10%). Это:

  • плоскоциты с плоской поверхностью;
  • стареющие виды данных клеток – эхиноциты;
  • шаровидные сфероциты;
  • куполообразные стоматоциты.

Эритроциты – размеры

Диаметр кровяных телец варьируется от 6 до 8,2 микрометров (мкм). Максимальная толщина – всего 2 мкм. Крохотный размер позволяет легко перемещаться по микроскопическим капиллярным сосудам. Явления, когда нормальные размеры эритроцитов увеличиваются в ту или иную сторону современная медицина называет макроцитоз и микроцитоз. Диаметр здоровых телец – 7-9 микрон, они именуются нормоциты. Все, что ниже – это микроциты, а выше – макроциты.

Какую функцию выполняют эритроциты крови?

Кровяные тельца играют важную роль в организме человека.

Помимо переноса кислорода к тканям из легких, функции эритроцитов в крови включают:

  1. Обратную транспортировку углекислого газа к легким из тканей.
  2. Перенос на своей поверхности полезных аминокислот.
  3. Доставку воды от тканей к легким. Она выделяется в виде пара.
  4. Выделение эритроцитарных факторов свертывания крови.
  5. Регуляция вязкости крови, которая благодаря участию красных телец меньше в мелких сосудах по сравнению с крупными.

Кислотно-основное состояние, то есть соотношение гидроксильных и водородных ионов в биологической среде, регулируется красными кровяными тельцами. Они же переправляют О2и СО2 от тканей к легким. Газообмен – основная функция эритроцитов.

Как это работает:

  1. Вдыхаемый кислород попадает в легкие. Туда через узкие сосуды и крохотные капилляры протискиваются кровяные тельца.
  2. Железо гемоглобина захватывает кислород, при этом пигмент меняет свой цвет от синего к красному. И эритроциты разносят собранный кислород по всему телу.
  3. Водород окисляется клетками тела, и вместе с этим образуется углекислый газ. Большая часть возвращается назад через легкие, но некоторые молекулы остаются на эритроцитах.

Отвечая на вопрос, какую функцию выполняют эритроциты, упоминают транспортную. Но «перевозят» они не только кислород с углекислым газом, но и полезные вещества. Незаменимые аминокислоты и липиды концентрируются на поверхности красных телец, попадая туда из плазмы, и транспортируются к клеткам тканей. В этом – питательные функции эритроцитов.

Защитная функция эритроцитов

Важной функцией эритроцитов является защита организма от вредных веществ. На поверхности красных кровяных телец находятся антитела белковой природы. Благодаря им эритроциты способны связывать некоторые токсины и обезвреживать их, выполняя роль защитника от ядов. Кроме того, красные тельца принимают участие в свертывании крови, гемостазе (сосудисто-тромбоцитарном) и фибринолизе – процессе растворения тромбов.

Ферментативная функция эритроцитов

Красные кровяные тельца – носители разнообразных ферментов. В этом заключается еще одна транспортная функция эритроцитов в крови человека. Все ферменты в кровяных клетках можно разделить на три вида:

  • регулирующие оксигенацию и диоксигенацию;
  • способствующие выполнению транспортных функций;
  • обеспечивающие биологические процессы энергией.

Гемолиз крови

Красные тельца живут не дольше отмеренного им срока – 110-120 суток – и разрушаются в крови непрерывно, высвобождая гемоглобин. Процесс носит название гемолиз, и его виды различаются по характеру, механизму и месту возникновения. Так эндогенный гемолиз происходит в организме, а экзогенный – вне него, например, в аппарате искусственного кровообращения. Кроме этого, разрушение эритроцитов бывает:

  1. Внутриклеточным – в селезенке, печени, костном мозге.
  2. Внутрисосудистым – в плазме крови.

По характеру различают физиологический и патологический распад кровяных телец. Эритроциты выполняют функцию транспортеров, возложенную на них, и гибнут в плазме крови или тканях. В последнем случае разрушение телец провоцируют негативные факторы и патологические состояния, такие как:

  • анемия;
  • ревматические болезни;
  • патологии почек.

Можно назвать несколько разновидностей гемолиза:

  1. Температурный, возникающий из-за воздействия холода.
  2. Химический, которому способствует воздействие спиртов, эфира, щелочи, кислоты, растворяющих липиды в мембране.
  3. Биологический, виной которому такие природные факторы, как яды насекомых, змей, бактерий или переливание человеку несовместимой крови.
  4. Механический – возникает при разрыве мембран.
  5. Осмотический, который наблюдается тогда, когда эритроциты попадают в среду, где осмотическое давление ниже, чем кровяное. В тельца входит вода, они набухают и разрываются.

Что такое СОЭ?

Лабораторные исследования показывают количество эритроцитов в крови, их размеры, форму, изменение. Но есть особый СОЭ анализ (скорость оседания эритроцитов), отражающий соотношение фракций белков плазмы. Для этого кровь помещают в пробирку, содержащую препятствующие ее свертываемости вещества. Вес кровяных телец выше, чем плазмы (1,080 к 1,029), и они оседают внизу. Замеряя время, за которое это произойдет, высчитывают СОЭ.

Если показатели имеют отклонение, врачи рассматривают это, как косвенный признак текущего заболевания воспалительного характера, например:

  • панкреатит;
  • аппендицит;
  • аднексит.

Норма эритроцитов по данному исследованию различается в зависимости от возраста и пола:

  1. Скорость движения красных телец у новорожденных – 1-2 мм/ч. В период от месяца до полугода она резко возрастает до 11-17 мм/ч, но потом приходит к показателям 1-8 мм/ч.
  2. СОЭ у мужчин не превышает 2-10 мм/ч.
  3. У женщин этот показатель: от 3 до 15 мм/ч, у беременных выше – с приближением родов доходит до максимальных значений 55 мм/ч.

Норма эритроцитов в крови

О наличии патологических состояний говорит и концентрация в крови красных телец. Чтобы подсчитать количество их, используют особый аппарат – камеру Горяева. Биоматериал помещают в смеситель и разбавляют ее с 3% раствором хлорида – соотношение 1:100. Капля смеси поставляется в камеру с квадратными сетками, когда они заполняются, лаборанты рассматривают результаты под микроскопом и высчитывают число эритроцитов в 1 мкл крови.

Среднее значение нормы – 3,8 до 5,10 х 10¹²/л, т.е. несколько миллионов клеток в микролитре. Цифры также меняются от возраста и пола.

Количество эритроцитов для разных категорий:

  • 4-5,1 млн/мкл у мужчин;
  • от 3,7 до 4,7 млн/мкл у женщин и от 3 до 3,5 млн/мкл у беременных;
  • у детей от года до 12 лет: 3,8–5 млн/мкл и 3,9–5,9 млн/мкл у новорожденных.

Функции эритроцитов в человеческой крови не ограничиваются переносом кислорода и двуокиси углерода. Высокоспециализированные клетки имеют важное значение в жизни организма, а определяя их количество и качество (внешний вид, толщину и скорость движения), врачи проводят лабораторные исследования, помогающие определить наличие различных патологий.

Статьи по теме:

Почему лимфатические узлы нельзя массировать – знать об этом необходимо каждому, поскольку при самомассаже могут затрагиваться опасные зоны. Неумелые действия массажиста способны привести к неприятным последствиям – воспалению и падению иммунитета.

Что такое ферритин, что означает анализ крови, как трактовать результаты – обо всем этом пойдет речь в нашей статье. Рассматриваемое соединение является важным диагностическим маркером, отражающим метаболические процессы в организме с участием железа.

Постгеморрагическая анемия развивается от обильного или длительного кровотечения. Лечение начинается с поиска и устранения причины, которой могут стать серьезные травмы, хронические заболевания, осложнения после операций.

Прививка от кори взрослым, которые не переболели данной патологией и не были вакцинированы ранее, является единственной эффективной мерой профилактики вирусного заболевания. Важно выполнить ее правильно и учесть все противопоказания к процедуре.

womanadvice.ru

Эритроциты

Эритроциты - самые многочисленные, высокоспециализированные клетки крови, основная функция которых состоит в транспорте кислорода (О2) из легких в ткани и двуокиси углерода (СО2) из тканей в легкие.

Зрелые эритроциты не имеют ядра и цитоплазматических органелл. Поэтому они не способны к синтезу белков или липидов, синтезу АТФ в процессах окислительного фосфорилирования. Это резко уменьшает собственные потребности эритроцитов в кислороде (не более 2% от всего кислорода, транспортируемого клеткой), а синтез АТФ осуществляется в ходе гликолитического расщепления глюкозы. Около 98% массы белков цитоплазмы эритроцита составляет гемоглобин.

Около 85% эритроцитов, называемых нормоцитами, имеют диаметр 7-8 мкм, объем 80-100 (фемтолитров, или мкм3) и форму — в виде двояковогнутых дисков (дискоциты). Это обеспечивает им большую площадь газообмена (суммарно для всех эритроцитов около 3800 м2) и уменьшает расстояние диффузии кислорода до места его связывания с гемоглобином. Примерно 15% эритроцитов обладают различной формой, размерами и могут иметь отростки на поверхности клеток.

Полноценные «зрелые» эритроциты обладают пластичностью — способностью к обратимой деформации. Это позволяет им проходить но сосудам с меньшим диаметром, в частности, через капилляры с просветом в 2-3 мкм. Такая способность к деформации обеспечивается за счет жидкостного состояния мембраны и слабого взаимодействия между фосфолипидами, белками мембраны (гликофорины) и цитоскелетом белков внутриклеточного матрикса (спектрин, анкирин, гемоглобин). В процессе старения эритроцитов происходит накопление в мембране холестерола, фосфолипидов с более высоким содержанием жирных кислот, возникает необратимая агрегация спектрина и гемоглобина, что вызывает нарушение структуры мембраны, формы эритроцитов (из дискоцитов они превращаются в сфероциты) и их пластичности. Такие эритроциты не могут проходить через капилляры. Они захватываются и разрушаются макрофагами селезенки, а отдельные из них гемолизируются внутри сосудов. Гликофорины придают гидрофильные свойства наружной поверхности эритроцитов и электрический (дзета) потенциал. Поэтому эритроциты отталкиваются друг от друга и находятся в плазме во взвешенном состоянии, определяя суспензионную устойчивость крови.

Скорость оседания эритроцитов (СОЭ)

Скорость оседания эритроцитов (СОЭ) — показатель, характеризующий оседание эритроцитов крови при добавлении антикоагулянта (например, цитрата натрия). Определение СОЭ производят, измеряя высоту столбика плазмы над эритроцитами, осевшими в вертикально расположенном специальном капилляре за 1 ч. Механизм этого процесса определяется функциональным состоянием эритроцита, его зарядом, белковым составом плазмы и другими факторами.

Удельный вес эритроцитов выше, чем плазмы крови, поэтому в капилляре с кровью, лишенной возможности свертываться, они медленно оседают. СОЭ составляет у здоровых взрослых людей 1-10 мм/ч у мужчин и 2-15 мм/ч у женщин. У новорожденных СОЭ равно 1-2 мм/ч, а у пожилых людей — 1-20 мм/ч.

К основным факторам, влияющим на СОЭ, относят: количество, форму и размеры эритроцитов; количественное соотношение различных видов белков плазмы крови; содержание желчных пигментов и др. Повышение содержания альбуминов и желчных пигментов, а также повышение количества эритроцитов в крови вызывает возрастание дзета-потенциала клеток и уменьшение СОЭ. Увеличение содержания в плазме крови глобулинов, фибриногена, снижение содержания альбуминов и уменьшение количества эритроцитов сопровождается увеличением СОЭ.

Одной из причин более высокого значения СОЭ у женщин, по сравнению с мужчинами, является более низкое количество эритроцитов в крови женщин. СОЭ увеличивается при сухоядении и голодании, после вакцинации (вследствие увеличения содержания глобулинов и фибриногена в плазме), во время беременности. Замедление СОЭ может наблюдаться при повышении вязкости крови вследствие усиленного испарения пота (например, при действии высокой внешней температуры), при эритроцитозе (например, у жителей высокогорья или у альпинистов, у новорожденных).

Количество эритроцитов

Число эритроцитов в периферической крови взрослого человека составляет: у мужчин — (3,9-5,1)*1012 клеток/л; у женщин — (3,7-4,9) • 1012 клеток/л. Их количество в разные возрастные периоды у детей и взрослых отражено в табл. 1. У пожилых людей количество эритроцитов приближается в среднем к нижней границе нормы.

Увеличение количества эритроцитов в единице объема крови выше верхней границы нормы называется эритроцитозом: для мужчин — выше 5,1 • 1012 эритроцитов/л; для женщин — выше 4,9 • 1012 эритроцитов/л. Эритроцитоз бывает относительным и абсолютным. Относительный эритроцитоз (без активации эритропоэза) наблюдается при повышении вязкости крови у новорожденных (см. табл. 1), во время физической работы или действии на организм высокой температуры. Абсолютный эритроцитоз является следствием усиленного эритропоэза, наблюдаемого при адаптации человека к высокогорью или у тренированных на выносливость лиц. Эригроцитоз развивается при некоторых заболеваниях крови (эритремии) или как симптом других заболеваний (сердечной или легочной недостаточности и др.). При любом виде эритроцитоза обычно увеличивается содержание в крови гемоглобина и гематокрит.

Таблица 1. Показатели красной крови у здоровых детей и взрослых

Группа

Эритроциты 1012/л

Ретикулоциты, %

Гемоглобин, г/л

Гематокрит, %

MCV, фл

МСН, пг

МСНС г/100 мл

Новорожденные

5,0-7,0

12-50

192-232

57-65

101-128

25,4-34,6

30-37

1-я неделя

4,5-5,4

12-45

187-192

50-60

95-112

25,4-34.6

30-37

1-й месяц

3,9-4,8

6-8

145-162

40-48

90-93

25,4-34,6

30-37

6 месяцев

3,7-4,6

6-8

118-130

32-36

77-79

25,4-34.6

30-37

1 год

4,0-5,1

6-8

118-127

34-38

75-85

25,4-34,6

30-37

5 лет

3,9-5,1

0,5-1,2

118-133

35-39

80-85

25,4-34,6

30-37

Взрослые мужчины

3,9-5,1

0,5-1,2

130-170

40-49

80-100

25,4-34.6

30-37

Взрослые женщины

3,7-4,9

0.5-1,2

120-150

36-42

79-98

25,4-34,6

30-36

Примечание. MCV (mean corpuscular volume) — средний объем эритроцитов; МСН (mean corpuscular hemoglobin) среднее содержание гемоглобина в эритроците; МСНС (mean corpuscular hemoglobin concentration) — содержание гемоглобина в 100 мл эритроцитов (концентрация гемоглобина в одном эритроците).

Эритропения — это уменьшение количества эритроцитов в крови меньше нижней границы нормы. Она также может быть относительной и абсолютной. Относительная эритропения наблюдается при увеличении поступления жидкости в организм при не измененном эритропоэзе. Абсолютная эритропения (анемия) является следствием: 1) повышенного кроверазрушения (аутоиммунный гемолиз эритроцитов, избыточная кроверазрушающая функция селезенки); 2) понижения эффективности эритропоэза (при дефиците железа, витаминов (особенно, группы В) в пищевых продуктах, отсутствии внутреннего фактора Кастла и недостаточном всасывании витамина В12); 3) кровопотери.

Основные функции эритроцитов

Транспортная функция заключается в переносе кислорода и углекислого газа (дыхательная или газотранспортная), питательных (белки, углеводы и др.) и биологически активных (NO) веществ. Защитная функция эритроцитов заключается в их способности связывать и обезвреживать некоторые токсины, а также участвовать в процессах свертывания крови. Регуляторная функция эритроцитов заключается в их активном участии в поддержании кислотно-основного состояния организма (рН крови) с помощью гемоглобина, который может связывать С02 (снижая тем самым содержание Н2С03 в крови) и обладает амфолитными свойствами. Эритроциты могут также участвовать в иммунологических реакциях организма, что обусловлено наличием в их клеточных мембранах специфических соединений (гликопротеинов и гликолипидов), обладающих свойствами антигенов (аглютиногенов).

Жизненный цикл эритроцитов

Местом образования эритроцитов в организме взрослого человека является красный костный мозг. В процессе эритропоэза из полипотентной стволовой гемопоэтической клетки (ПСГК) через ряд промежуточных этапов образуются ретикулоциты, которые выходят в периферическую кровь и превращаются через 24-36 ч в зрелые эритроциты. Срок их жизни — 3-4 месяца. Место гибели — селезенка (фагоцитоз макрофагами до 90%) или внутрисосудистый гемолиз (обычно до 10%).

Функции гемоглобина и его соединения

Основные функции эритроцитов обусловлены наличием в их составе особого белка — гемоглобина. Гемоглобин осуществляет связывание, транспорт и высвобождение кислорода и углекислого газа, обеспечивая дыхательную функцию крови, участвует в регуляции pH крови, выполняя регуляторную и буферную функции, а также придает эритроцитам и крови красный цвет. Гемоглобин выполняет свои функции лишь находясь в эритроцитах. В случае гемолиза эритроцитов и выхода гемоглобина в плазму он не может выполнять свои функции. Гемоглобин в плазме связывается с белком гаптоглобином, образующийся комплекс захватывается и разрушается клетками фагоцитирующей системы печени и селезенки. При массивном гемолизе гемоглобин удаляется из крови почками и появляется в моче (гемоглобинурия). Период его полу вы ведения составляет около 10 мин.

Молекула гемоглобина имеет две пары полипептидных цепей (глобин — белковая часть) и 4 гема. Гем — комплексное соединение протопорфирина IX с железом (Fe2+), которое обладает уникальной способностью присоединять или отдавать молекулу кислорода. При этом железо, к которому присоединяется кислород остается двухвалентным, оно может легко окисляться также до трехвалентного. Гем является активной или так называемой простетической группой, а глобин — белковым носителем гема, создающим для него гидрофобный карман и защищающим Fe2+ от окисления.

Существует ряд молекулярных форм гемоглобина. В крови взрослого человека содержатся НbА (95-98% НbА1 и 2-3% НbA2) и HbF (0,1-2%). У новорожденных преобладает HbF (почти 80%), а у плода (до 3-месячного возраста) — гемоглобин типа Gower I.

Нормальное содержание гемоглобина в крови мужчин составляет в среднем 130-170 г/л, у женщин — 120-150 г/л, у детей — зависит от возраста (см. табл. 1). Общее содержание гемоглобина в периферической крови равно примерно 750 г (150 г/л • 5 л крови = 750 г). Один грамм гемоглобина может связать 1,34 мл кислорода. Оптимальное выполнение эритроцитами дыхательной функции отмечается при нормальном содержании в них гемоглобина. Содержание (насыщение) в эритроците гемоглобина отражают следующие показатели: 1) цветовой показатель (ЦП); 2) МСН — среднее содержание гемоглобина в эритроците; 3) МСНС — концентрация гемоглобина в эритроците. Эритроциты с нормальным содержанием гемоглобина характеризуются ЦП = 0,8-1,05; МСН = 25,4-34,6 пг; МСНС = 30-37 г/дл и называются нормохромными. Клетки со сниженным содержанием гемоглобина имеют ЦП < 0,8; МСН < 25,4 пг; МСНС < 30 г/дл и получили название гипохромных. Эритроциты с повышенным содержанием гемоглобина (ЦП > 1,05; МСН > 34,6 пг; МСНС > 37 г/дл) называются гиперхромными.

Причиной гипохромии эритроцитов чаще всего является их образование в условиях дефицита железа (Fe2+) в организме, а гиперхромии — в условиях недостатка витамина В12 (цианокобаламин) и (или) фолиевой кислоты. В ряде районов нашей страны имеется низкое содержание Fe2+ в воде. Поэтому у их жителей (особенно, у женщин) повышена вероятность развития гипохромной анемии. Для ее профилактики необходимо компенсировать недостаток поступления железа с водой пищевыми продуктами, содержащими его в достаточных количествах или специальными препаратами.

Соединения гемоглобина

Гемоглобин, связанный с кислородом, называется оксигемоглобином (НbО2). Его содержание в артериальной крови достигает 96-98%; НbО2, отдавший O2 после диссоциации, называется восстановленным (ННb). Гемоглобин связывает углекислый газ, образуя карбгемоглобин (НЬСО2). Образование НbС02 не только способствует транспорту СО2, но и снижает образование угольной кислоты и поддерживает тем самым гидрокарбонатный буфер плазмы крови. Оксигемоглобин, восстановленный гемоглобин и карбгемоглобин называются физиологическими (функциональными) соединениями гемоглобина.

Карбоксигемоглобин — соединение гемоглобина с угарным газом (СО — оксид углерода). Гемоглобин обладает существенно большим сродством к СО, чем к кислороду, и образует карбоксигемоглобин при небольших концентрациях СО, теряя при этом способность связывать кислород и создавая угрозу для жизни. Еще одним нефизиологическим соединением гемоглобина является метгемоглобин. В нем железо окислено до трехвалентного состояния. Метгемоглобин не способен вступать в обратимую реакцию с О2 и является соединением функционально не активным. При его избыточном накоплении в крови также возникает угроза для жизни человека. В связи с этим, метгемоглобин и карбоксигемоглобин называются еще патологическими соединениями гемоглобина.

У здорового человека метгемоглобин постоянно присутствует в крови, но в очень небольших количествах. Образование метгемоглобина происходит под действием окислителей (перекисей, нитропроизводных органических веществ и др.), которые постоянно поступают в кровь из клеток различных органов, особенно, кишечника. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитарных ферментов дегидрогеназ.

Эритропоэз

Эритропоэз - это процесс образования эритроцитов из ПСГК. Количество эритроцитов, содержащихся в крови, зависит от соотношения эритроцитов, образующихся и разрушающихся в организме за одно и то же время. У здорового человека количество образующихся и разрушающихся эритроцитов равно, что обеспечивает в нормальных условиях поддержание относительно постоянного числа эритроцитов в крови. Совокупность структур организма, включающих периферическую кровь, органы эритропоэза и разрушения эритроцитов называют эритроном.

У взрослого здорового человека эритропоэз происходит в гемопоэтическом пространстве между синусоидами красного костного мозга и завершается в кровеносных сосудах. Под влиянием сигналов клеток микроокружения, активированных продуктами разрушения эритроцитов и других клеток крови, раннедействующие факторы ПСГК дифференцируются в коммитированные олигопотентные (миелоидные), а затем в унипотентные стволовые гемопоэтические клетки эритроидного ряда (БОЕ-Э). Дальнейшая дифференцировка клеток эритроидного ряда и образование непосредственных предшественников эритроцитов — ретикулоцитов происходит под влиянием позднедействующих факторов, среди которых ключевую роль играет гормон эритропоэтин (ЭПО).

Ретикулоциты выходят в циркулирующую (периферическую) кровь и в течение 1-2 дней преобразуются в эритроциты. Содержание ретикулоцитов в крови составляет 0,8-1,5% от количества эритроцитов. Продолжительность жизни эритроцитов составляет 3-4 месяца (в среднем 100 дней), после чего они выводятся из кровотока. За сутки в крови замещается около (20-25) • 1010 эритроцитов ретикулоцитами. Эффективность эритропоэза при этом составляет 92-97%; 3-8% клеток- предшественниц эритроцитов не завершают цикл дифференцирования и разрушаются в костном мозге макрофагами — неэффективный эритропоэз. В особых условиях (например, стимуляции эритропоэза при анемиях) неэффективный эритропоэз может достигать 50%.

Эритропоэз зависит от многих экзогенных и эндогенных факторов и регулируется сложными механизмами. Он зависит от достаточного поступления в организм с пищей витаминов, железа, других микроэлементов, незаменимых аминокислот, жирных кислот, белка и энергии. Их недостаточное поступление ведет к развитию алиментарной и других форм дефицитных анемий. Среди эндогенных факторов регуляции эритропоэза ведущее место отводится цитокинам, в особенности эритропоэтину. ЭПО является гормоном гликопротеиновой природы и основным регулятором эритропоэза. ЭПО стимулирует пролиферацию и дифференцирование всех клеток-предшественниц эритроцитов, начиная с БОЕ-Э, увеличивает скорость синтеза в них гемоглобина и угнетает их апоптоз. У взрослого человека главным местом синтеза ЭПО (90%) являются перитубулярные клетки ночек, в которых образование и секреция гормона увеличиваются при снижении напряжения кислорода в крови и в этих клетках. Синтез ЭПО в почках усиливается под влиянием гормона роста, глюкокортикоидов, тестостерона, инсулина, норадреналина (через стимуляцию β1-адренорецепторов). В небольших количествах ЭПО синтезируется в клетках печени (до 9%) и макрофагах костного мозга (1%).

В клинике для стимуляции эритропоэза используется рекомбинантный эритропоэтин (rHuEPO).

Угнетают эритропоэз женские половые гормоны эстрогены. Нервная регуляция эритропоэза осуществляется АНС. При этом увеличение тонуса симпатического отдела сопровождается усилением эритропоэза, а парасимпатического — ослаблением.

www.grandars.ru

ЭРИТРОЦИТЫ, свойства и функции.

Э Р И Т Р О Ц И Т

(греч. erythoros – красный, cytus -клетка) – безъядерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска диаметром 7-8 мкм, толщиной 1-2,5 мкм. Они очень гибки и эластичны, легко деформируются и проходят через кровеносные капилляры с диаметром меньшим, чем диаметр эритроцита. Образуются в красном костном мозге, разрушаются в печени и селезенке. Продолжительность жизни эритроцитов составляет 100-120 дней. В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом – гемоглобином, составляющим 90% сухого вещества эритроцитов.

В норме в крови у мужчин 4 – 5 · 1012 /л, у женщин 3,7 – 5 · 1012 /л, у новорожденных до 6 · 1012 /л. Увеличение количества эритроцитов в единице объема крови называется эритроцитозом (полиглобулией, полицитемией), уменьшение – эритропенией. Общая площадь поверхности всех эритроцитов взрослого человека составляет 3000-3800 м2, что в 1500-1900 раз превышает поверхность тела.

Функции эритроцитов:

1) дыхательная – за счет гемоглобина, присоединяющего к себе О2 и СО2;

2) питательная – адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;

3) защитная – связывание токсинов находящимися на их поверхности антитоксинами и участие в свертывании крови;

4) ферментативная – перенос различных ферментов: угольной ангидразы (карбоангидразы), истинной холинэстеразы и др.;

5) буферная – поддержание с помощью гемоглобина рН крови в пределах 7,36-7,42;

6) креаторная – переносят вещества, осуществляющие межклеточные взаимодействия, обеспечивающие сохранность структуры органов и тканей. Например, при повреждении печени у животных эритроциты начинают транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты, восстанавливающие структуру этого органа.

Гемоглобин является основной составной частью эритроцитов и обеспечивает:

1) дыхательную функцию крови за счет переноса О2 от легких тканям и СО2 от клеток к легким;

2) регуляцию активной реакции (рН) крови, обладая свойствами слабых кислот (75% буферной емкости крови).

По химической структуре гемоглобин является сложным белком – хромопротеидом, состоящим из белка глобина и простетической группы гема (четырех молекул). Гем имеет в своем составе атом железа, способный присоединить и отдавать молекулу кислорода. При этом валентность железа не изменяется, т.е. оно остается двухвалентным.

В норме в крови человека должно содержатся в идеале 166,7 г/л гемоглобина. У мужчин в среднем нормальное содержание гемоглобина 130-160 г/л, у женщин 120-140 г/л. Снижение содержания гемоглобина в крови - анемия, цветовой показатель – это степень насыщения эритроцитов гемоглобином. В норме он составляет 0,86-1. Снижение цветного показателя обычно бывает при дефиците железа в организме – железодефицитной анемии, повышение выше 1,0 – при дефиците витамина В12 и фолиевой кислоты. 1 г гемоглобина связывает 1,34 мл кислорода. Разница в содержании эритроцитов и гемоглобина у мужчин и женщин объясняется стимулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов. Гемоглобин синтезируется эритробластами и нормобластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент – билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемоглобина, т.е. около 1% гемоглобина, находящегося в крови.

В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа – гем идентична этой же группе молекулы гемоглобина крови, а белковая часть – глобин обладает меньшей молекулярной массой, чем белок гемоглобина. Миоглобин связывает до 14% общего количества кислорода в организме. Его назначение – снабжение кислородом работающей мышцы в момент сокращения, когда кровоток в ней уменьшается или прекращается.

В норме гемоглобин содержится в крови в виде трех физиологических соединений:

1) оксигемоглобин (HbO2) – гемоглобин, присоединивший O2; находится в артериальной крови, придавая ей ярко-алый цвет;

2) восстановленный, или редуцированный, гемоглобин, дезоксигемоглобин (Hb) – оксигемоглобин, отдавший O2; находится в венозной крови, которая имеет более темный цвет, чем артериальная;

3) карбгемоглобин (HbСO2) – соединение гемоглобина с углекислым газом; содержится в венозной крови.

Гемоглобин способен образовывать и патологические соединения.

Сродство железа гемоглобина к угарному газу превышает его сродство к O2 , поэтому даже 0,1% угарного газа в воздухе ведет к превращению 80% гемоглобина в карбоксигемоглобин, который неспособен присоединить O2; что является опасным для жизни. Слабое отравление угарным газом – обратимый процесс. Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз.

Метгемоглобин (MetHb) – соединение, в котором под влиянием сильных окислителей (анилин, бертолетова соль, фенацетин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.

Л Е Й К О Ц И Т

(греч. leukos – белый, cytus – клетка), или белое кровяное тельце – это бесцветная ядерная клетка, не содержащая гемоглобина. Размер лейкоцитов – 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезенке, лимфатических фолликулах. В 1 л крови в норме содержится лейкоцитов 4 – 9 · 109 /л. увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией. Продолжительность жизни лейкоцитов составляет в среднем 15-20 дней, лимфоцитов – 20 и более лет. Некоторые лимфоциты живут на протяжении всей жизни человека.

Лейкоциты делят на две группы: гранулоциты (зернистые) и агранулоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы, а в группу агранулоцитов – лимфоциты и моноциты. При оценке изменений числа лейкоцитов в клинике решающее значение придается не столько изменениями их количества, сколько изменениям взаимоотношений между различными видами клеток. Процентное соотношение отдельных форм лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2
Число лейко- цитов В 1 л Гранулоциты, % Агранулоциты,%
  Нейтрофилы Эози- нофилы Базо-филы Лим-фоциты Моно-циты
  Мие-лоциты Мета-миело-циты (юные) Палоч- коядер- ные Сег-менто-ядерные        
4 – 9 · 109/л 0-1 1-5 45-70 1-4 0-1 20-40 2-8

У здоровых людей лейкограмма довольно постоянна, и ее изменения служат признаком различных заболеваний. Так, например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болезни – эозинофилия, при вялотекущих хронических инфекциях (туберкулез, ревматизм и др.) – лимфоцитоз.

По нейтрофилам можно определить пол человека. При наличии женского генотипа 7 из 500 нейтрофилов содержит особые, специфические для женского пола образования, называемые «барабанными палочками» (круглые выросты диаметром 1,5-2 мкм, соединенные с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Все виды лейкоцитов обладают тремя важнейшими физиологическими свойствами:

1) амебовидной подвижностью – способностью активно передвигаться за счет образования ложноножек (псевдоподий);

2) диапедезом – способностью выходить (мигрировать) через неповрежденную стенку сосуда;

3) фагоцитозом – способностью окружать инородные тела и микроорганизмы, захватывать их в цитоплазму, поглощать и переваривать. Это явление было подробно изучено и описано И.И. Мечниковым (1882).

Лейкоциты выполняют множество функций:

1) защитная – борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая – выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невосприимчивость к заразным болезням (В-лимфоциты);

4) участвуют в развитии всех этапов воспаления, стимулируют восстановительные (регенеративные) процессы в организме и ускоряют заживление ран;

5) ферментативная – они содержат различные фермент, необходимые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гистамина, активатора плазминогена. (Базофилы);

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора («цензуры»), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток (Т-лимфоциты);

9) образуют активные (эндогенные) пирогены и формируют лихорадочную реакцию;

10) несут микромолекулы с информацией, необходимой для управления генетическим аппаратом других клеток организма; путем таких межклеточных взаимодействий (креаторных связей) восстанавливается и поддерживается целостность организма.

Лимфоцит– это вид лейкоцита, который отвечает за выработку иммунитета и борьбу с микробами и вирусами. Количество лимфоцитов в разных анализах может быть представлено в виде абсолютного числа (сколько лимфоцитов было обнаружено), либо в виде процентного соотношения (какой процент от общего числа лейкоцитов составляют лимфоциты). В норме количество лимфоцитов -20 -40% . Увеличение числа лимфоцитов (лимфоцитоз) встречается при некоторых инфекционных заболеваниях (краснуха, грипп, токсоплазмоз, инфекционный, мононуклеоз, вирусный гепатит и др.), а также при заболеваниях крови (хронический лимфолейкоз и др). Уменьшение числа лимфоцитов (лимфопения) встречается при тяжелых хронических заболеваниях, СПИДе, почечной недостаточности, приеме некоторых лекарств, подавляющих иммунитет (кортикостероиды и др.).

Моноциты – это лейкоциты, которые, попав в сосуды, вскоре выходят из них в окружающие ткани, где превращаются в макрофагов (макрофаги – это клетки, которые поглощают и переваривают бактерий и погибшие клетки организма). Количество моноцитов в различных анализах может выражаться в абсолютных показателях (MON#) и в процентах от общего числа лейкоцитов (MON%). Повышенное содержание моноцитов встречается при некоторых инфекционных заболеваниях (туберкулез, инфекционный мононуклеоз, сифилис и др.), ревматоидном артрите, заболеваниях крови. Снижение уровня моноцитов встречается после тяжелых операций, приема лекарств, подавляющих иммунитет (кортикостероиды и др.).

Нейтрофилы - самая большая группа лейкоцитов, обеспечивающих защиту организма от различных инфекций. Нейтрофилы образуются в костном мозге. Они проникают в ткани организма из крови и уничтожают чужеродные, патогенные микроорганизмы путем их фагоцитоза, то есть, поглощая и переваривая чужеродные частицы, и после их переваривания погибают. По нейтрофилам можно определить пол человека. При наличии женского генотипа 7 из 500 нейтрофилов содержит особые, специфические для женского пола образования, называемые «барабанными палочками» (круглые выросты диаметром 1,5-2 мкм, соединенные с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Если в организме появляется какая-то инфекция или воспалительный процесс, костный мозг выбрасывает в кровь незрелые нейтрофилы, и по их количеству можно определять наличие бактериальной инфекции и судить о ее активности в организме. Появление в крови незрелых форм (промиелоциты, миелоциты), увеличение количества юных и палочкоядерных форм носит название сдвига влево (потому что в лейкоцитарной формуле крови различные формы нейтрофилов указываются слева направо от молодых к зрелым).Нейтрофилез– повышение количества нейтрофилов – является отражением своеобразной защиты организма от инфекций и воспалений. Нейтрофилез в большинстве случаев сочетается с лейкоцитозом (нейтрофильный лейкоцитоз), а нейтрофилез с палочкоядерным сдвигом довольно типичен для бактериальных инфекций. Нейтропения– снижение числа нейтрофилов – свидетельствует о функциональном или органическом угнетении кроветворения в костном мозге или об усиленном разрушении нейтрофилов под воздействием антител к лейкоцитам, токсических факторов или циркулирующих иммунных комплексов. Снижение количества нейтрофилов в крови может наблюдаться при вирусных инфекциях, при использовании некоторых лекарств. Нейтропения обычно свидетельствует о снижении иммунитета.

Эозинофилы(один из видов лейкоцитов) – это неделящиеся гранулоциты, которые беспрерывно образуются в костном мозге. Эозинофилы созревают в костном мозге в течение 3-4 дней, потом покидают его и циркулируют в крови несколько часов. Далее они перемещаются из кровяного русла в периваскулярные ткани, преимущественно в легкие, кожу и желудочно-кишечный тракт, где могут оставаться до 10-14 дней. Эозинофилы отвечают за уничтожение чужеродного белка в организме. Они поглощают белок, после чего растворяют его своими ферментами. Норма эозинофилов в крови 1-4%. Увеличение количества эозинофилов в крови называется эозинофилией. Эозинофилияможет возникнуть вследствие усиленного образования эозинофилов в костном мозге. Это является защитной реакцией организма в ответ на то, что в кровь поступают продукты чужеродного белка. Наиболее частой причиной эозинофилии являются аллергические заболевания, в первую очередь это болезни дыхательных путей и кожи. Во время аллергических заболеваний и реакций эозинофилы осуществляют транспортную и антитоксическую функции. Они способны переносит продукты распада белка, которые обладают антигенными свойствами, предотвращают местное скопление антигенов, и кроме этого обладают способностью к активному фагоцитозу. Эозинофилы играют немаловажную роль в борьбе с гельминтами, их личинками и яйцами. Например, при контакте личинок с активированным эозинофилом происходит его дегрануляция, вследствие чего на поверхность личинки выделяется большое количество белка и ферментов, что приводит к разрушению личинки.Уменьшение количества эозинофилов в крови (эозинопения), также как и полное исчезновение их из крови (анэозинофилия) может наблюдаться практически при всех острых инфекционных заболеваниях в разгаре болезни. Возникновение эозинофилов в крови во время острого инфекционного заболевания считается одним из ранних признаков того, что начинается выздоровление, и является очень благоприятным симптомом. Процент эозинофилов в крови в первые дни после выздоровления продолжает нарастать и может на некоторое время превысить нормальный (постинфекционная эозинофилия).

Базофилы– это самая малочисленная группа лейкоцитов. Как и все гранулоциты, базофилы образуются в костном мозге, после чего попадают в кровь, где циркулируют несколько часов. Из крови базофилы мигрируют в ткани и находятся там 8–12 дней. Базофилы играют важную роль при аллергических реакциях (крапивница, глистные инвазии, бронхиальная астма, лекарственная болезнь и др.). Когда базофил встречает аллерген, то происходит дегрануляция – разрушение гранул находящихся внутри него, и в кровь поступают биологически активные соединения, которые обуславливают клиническую картину заболевания. Норма базофилов в крови 0-1%. Повышение количества базофилов в крови называется базофилия. Базофилия может наблюдаться при аллергических состояниях (за исключением периода максимального проявления аллергических реакций, который сопровождается выходом базофилов в ткани в следствие чего снижается их концентрация в крови), при инфекциях (ветряная оспа, натуральная оспа), заболеваниях системы крови, при отравлениях. У женщин повышение уровня базофилов в крови характерно для начала менструального цикла, а также для периода овуляции. Отсутствие базофилов в крови (базопения) не имеет диагностического значения. Может выявляться иногда при острых инфекциях, гипертиреозе, после приема кортикостероидов.

Т Р О М Б О Ц И Т

(от греч. thrombos – сгусток крови, cytus – клетка), или кровяная пластинка, - участвующий в свертывании крови форменный элемент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диаметром 2-5 мкм. Тромбоциты образуются в красном костном мозге из гигантских клеток – мегакариоцитов. В норме в крови содержится в 1 л 180-320 · 109/л тромбоцитов. Увеличение количества тромбоцитов в периферической крови называется тромбоцитозом, уменьшение – тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2-10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между собой, при этом они образуют 2-10 островков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных веществ типа серотонина, адреналина, норадреналина и др.;

6) содержат в себе много специфических соединений (тромбоцитарных факторов), участвующих в свертывании крови: тромбоцитарный тромбопластин, антигепариновый, свертывающий факторы, тромбостенин, фактор агрегации и т.д.

Все эти свойства тромбоцитов обуславливают их участие в остановке кровотечения.

В кровеносном русле тромбоциты передвигаются по периферии кровеносного сосуда. При повреждении стенки сосуда они прилипают к поврежденной поверхности и запускается реакции свертывания крови.

Г Е М О Л И З

(греч. haima – кровь, lisis – распад, растворение), или гематолизис, эритролиз, - это процесс внутрисосудистого распада эритроцитов и выхода из них гемоглобина в кровяную плазму, которая окрашивается при этом в красный цвет и становится прозрачной («ласковая кровь»). Строма разрушенных, лишенных гемоглобина эритроцитов образует так называемые «тени эритроцитов». Однако имеются данные о том, что нарушение целостности эритроцитов при гемолизе необязательно, и что процесс может быть ограничен лишь функциональными изменениями эритроцитов с растяжением мембраны клетки и изменением ее проницаемости.

В зависимости от причины различают несколько видов гемолиза.

1) Осмотический гемолиз возникает при уменьшении осмотического давления, что вначале приводит к набуханию, а затем к разрушению эритроцитов. Мерой осмотической стойкости (резистентности) эритроцитов является концентрация NаСl, при которой начинается гемолиз. У человека это происходит в 0,4% растворе, а в 0,34% растворе разрушаются все эритроциты. При некоторых заболеваниях осмотическая стойкость эритроцитов уменьшается, и гемолиз может наступить при больших концентрациях NаСl в плазме.

2) Химический гемолиз происходит под влиянием химических веществ, разрушающих белково-липидную оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол, желчные кислоты и т.д.).

3) Механический гемолиз наблюдается при сильных механических воздействиях на кровь, например, при перевозке ампульной крови по плохой дороге, сильном встряхивании ампулы с кровью и т.д.

4) Термический гемолиз возникает при замораживании и размораживании ампульной крови, а также при нагревании ее до температуры 68-80°С.

5) Биологический гемолиз развивается при переливании несовместимой или недоброкачественной крови, при укусах ядовитых змей, скопионов, под влиянием иммунных гемолизинов и др.

6) Внутриаппаратный гемолиз может происходить в аппарате искусственного кровообращения во время перфузии (нагнетания) крови.

Скорость (реакция) оседания эритроцитов:

(сокращено СОЭ, или РОЭ) – показатель, отражающий изменения физико – химических свойств крои и измеряемой величиной столба плазмы, освобождающиеся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П. Панченкова.

В норме СОЭ равна:

У мужчин – 1-10 мм/час;

У женщин – 2-15 мм/час;

У новорожденных – 0,5 мм /час;

У беременных женщин перед родами – 25-40 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолекулярных белков – глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, поэтому СОЭ достигает 40-50 мм/час. О влиянии свойств плазмы на величину СОЭ говорят результаты опытов. Так например, эритроциты мужчин, помещенные в плазму крови, оседают со скоростью 5-9 мм/час, а в плазму беременной женщины – до 50 мм/час. равным образом эритроциты женщины оседают в плазме мужской крови со скоростью около 9 мм/час, а в плазме беременной женщины – до 60 мм/час. считают, что крупномолекулярные белки (глобулины, фибриноген) уменьшают электрический разряд клеток крови и явления электроотталкивания, что способствует большей СОЭ (образованию более длинных монетных столбиков из эритроцитов). Так, при СОЭ 1 мм/час монетные столбики образуются примерно из 11 эритроцитов, а при СОЭ 75 мм/час скопления эритроцитов имеют диаметр 100 мкм и более и состоят из большого количества (до 60000) эритроцитов.

Для определения СОЭ используется прибор Т.П. Панченкова, состоящий из штатива и градуированных стеклянных пипеток (капилляров). Пипетку заполняют разведенной 1:4 цитратной кровью (5% цитрат натрия – 1 часть и 4 части крови) и помещают вертикально в гнездо штатива на 1 час; после этого измеряют в миллиметрах слой плазмы над осевшими клетками крови.

Лейкоциты имеют свой, независимый от эритроцитов режим оседания, однако скорость оседания лейкоцитов в клинике во внимание не принимается.

Г Е М О С Т А З

(греч. haime – кровь, stasis-неподвижное состояние) – это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения – свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фазы:

I фаза – формирование протромбиназы; II фаза – образование тромбина; III фаза – превращение фибриногена в фибрин. В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, принимает участие 15 плазменных факторов: фибриноген, протромбин, тканевой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фактор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др. Большинство этих факторов образуется в печени при участии витамина К и является проферментами, относящимися к глобулиновой фракции белков плазмы. В активную форму – ферменты они переходят в процессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция. Последовательность реакций, приводящих к свертыванию крови, может быть представлена в виде схемы.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

ПОВРЕЖДЕНИЕ ТКАНИ КРОВЯНЫЕ ПЛАСТИНКИ

(тромбоциты)

освобождают распадаются и освобождают

тканевой тромбопластинтромбоцитарный тромбопластин

Са+2 белки Са+2 белки

       
   

I фаза протробиназа

Катализирует реакцию

II фаза протромбин тромбин+ пептидные фрагменты

Са+2

Катализирует реакцию

III фаза фибриноген фибрин-мономер+ пептиды

Полимеризация мономера

Фибрин-полимер

Сеть из волокон нерастворимого фибрина и опутанные ею эритроциты, лейкоциты и тромбоциты образуют кровяной сгусток. Прочность образовавшегося кровяного сгустка обеспечивается фактором XIII – фибринстабилизирующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других веществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови – 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая фибринолитическая. Противосвертывающая система препятствует процессам внутрисосудистого свертывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лейкоцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок гирудин действует угнетающе на третью стадию процесса свертывания крови, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшиеся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза – расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превращения в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere – сдерживать, останавливать), тормозящие превращения плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

- совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузии (лат. transfusio – переливание).

В 1901 г. австриец К.Ландштейнер и в 1903 г. чех Я.Янский обнаружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом – явление агглютинации (лат. agglutinatio – склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме были найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты. Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглютинина α, а также В и β называются одноименными. Склеивание эритроцитов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (человека, получающего кровь), т.е. А + α , В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находится разноименные агглютиноген и агглютинин.

Согласно классификации Я Янского и К. Ландштейнера у людей имеется 4 комбинации агглютиногенов и агглютининов, которые обозначаются следующим образом: I(0) - α β, II(А) –Аβ, III(В)-В α и IV(АВ). Из этих обозначений следует, что у людей I группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β. У людей II группы эритроциты имеют агглютиноген А, а плазма – агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютиноген В, а в плазме – агглютинин α. У людей IV группы в эритроцитах содержится оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы. Схема.

Схема

ГРУППЫ КРОВИ

ПЛАЗМА

АгглютининыI (0) II (А) III(В) IV(АВ)

αβ β α -

ЭРИТРОЦИТЫ

Агглютиногены

О А В АВ

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. Поэтому людей с I группой крови называют универсальными донорами. Людям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно переливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают только одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная терапия). Это связано с тем, что:

Во-первых, при больших массивных переливаниях разведения агглютининов донора не происходит, и они склеивают эритроциты реципиента;

Во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тяжелые осложнения. Поэтому людей с I группой крови, содержащих агглютинины анти-А и анти-В, сейчас называют опасными универсальными донорами;

В-третьих, в системе АВО выявлено много вариантов каждого агглютиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Различие между ними состоит в том, что А1 является самым сильным, А2 – А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при переливании ее больным с I и III группами. Агглютиноген В тоже существует в нескольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К. Ландшейнер, выступая на церемонии вручения ему Нобелевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эритроцитах человека обнаружено более 500 различных агглютиногенов. Только из этих агглютиногенов можно составить более 400 млн. комбинации, или групповых признаков крови. Если же учитывать и все остальные агглютиногены, встречающиеся в крови, то число комбинации достигает 700 млрд., т.е. значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый человек имеет свою группу крови. Данные системы агглютиногенов отличаются от системы АВО тем, что не содержит в плазме естественных агглютининов, подобных α- и β-агглютиннинам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела – агглютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступивший агглютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови определяется неверно, и больным вводят несовместимую кровь. Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие – замещение потерянной крови;

2) иммуностимулирующее действие – с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие – с целью остановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие – с целью уменьшения интоксикации;

5) питательное действие – введение белков, жиров, углеводов в легкоусвояемом виде.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5

Как мы только что отметили, кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемые резус – агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К. Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь называется резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательный (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов – D, C, E, из которых наиболее активен D. Особенностью резус-фактора является то, что у людей отсутствуют антирезус-агглютинины. Однако если человеку с резус – отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови вырабатываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов – возникает гемотрансфузионный шок.

Резус – фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее крови антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концентрации антирезус-агглютининов может наступить смерть плода и выкидыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус –агглютининов. Чаще всего первый ребенок рождается нормальным, поскольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порции антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрицательным женщинам назначают антирезус-гамма-глобулин, который нейтрализует резус-положительные антигены плода.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

«ФАЗЫ СВЕРТЫВАНИЯ КРОВИ»

           
     

ФАЗА Неактивный

тромбопластин +

           
     

2 ФАЗА Протромбин +

           
   
     

3 ФАЗА Фибриноген +

Заполните графологическую схему

«АНАТОМО-ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА КРОВИ».

Кровь

       
   

I.Латинское название 1 2

II. Общее количество от веса тела 3 4

III.Состав плазмы 5 6 7 8 9

       
   

IV.Давление крови 10 11

               
       

V.Буферная система 12 13 14 15

           
     

VI.Соединения гемоглобина в норме 16 17 18

           
     

VII.Клетки крови 19 20 21

           
     

VIII.Физико-химические свойства крови 23 24 25

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

01. Чем можно объяснить разницу в содержании эритроцитов и гемоглобина в крови у мужчин и женщин?

02. По каким клеткам крови и по каким признакам можно определить пол человека?

03. Можно ли назвать патологией наличие у жителя высокогорной местности содержания эритроцитов в крови 6 · 1012г/л?

04. Определите какая жидкость является нормальной плазмой крови.

Показатели Ответы и номера ответов
Относительная плотность 1,060 1,050 1,040 1,030 1,020
Вязкость 5,1 1,7 2,2 2,2 1,7
Реакция (рН) 7,6 7,4 7,3 7,4 7,2
Осмотическое давление, атм. 7,6 7,8 7,7 7,6 7,6
Онкотическое давление

05. Проведите анализ лабораторных данных полного анализа крови.

У женщин 32 лет.

Эритроциты – 2,7 · 1012г/л

Гемоглобин – 82 г/л

Цветовой показатель – 0,88

Лейкоциты – 10,5 · 109г/л

Тромбоциты - 280 · 109г/л

Лейкоцитарная формула:

СОЭ – 28 мм/г

06. Проведите анализ лабораторных данных биохимического анализа крови у женщины 38 лет:

сахар крови – 10,8 ммоль/л; мочевина – 14 ммоль/л; остаточный азот – 42 ммоль/л; холестерин – 9 ммоль/л.

07. В каком случае при повторной беременности может возникнуть несовместимость крови по резус –фактору?

08. При исследовании групп крови ни одна из сывороток не дала агглютинацию эритроцитов. Какая это группа крови?

09.Какие группы крови дадут агглютинацию сывороткой полициклоном анти-А?

10. Какое физиологическое значение имеет тот факт, что гемоглобин в организме находится внутри эритроцитов, а не растворенном состоянии в плазме крови?

Рассмотрите мазок крови и назовите клетки крови:

1 ______________________ 4 _____________________ 7 ______________________

2 ______________________ 5 _____________________ 8 ______________________

3 ______________________ 6 _____________________ 9 ______________________

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Строение и функции эритроцитов. Гемолиз.

Эритроциты – это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковыпуклого диска. В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритроцитов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там.

Мембрана эритроцитов и отсутствие ядра обеспечивает их главную функцию – перенос кислорода и участие в переносе углекислого газа. Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того, она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и обеспечивают ее отрицательный заряд. В нее встроен Na–К–АТФ–аза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того, в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинестераза и другие ферменты.

Функции эритроцитов:

1. Перенос кислорода от легких к тканям.

2. Участие в транспорте СО2 от тканей к легким.

3. Транспорт воды от тканей к легким, где она выделяется в виде пара.

4. Участие в свертывании крови, выделяя эритроцитарные факторы свертывания.

5. Перенос аминокислот на своей поверхности.

6. Участвуют в регуляции вязкости крови вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.

В одном микролитре крови мужчины содержится 4,5-5,0 млн. эритроцитов (4,5-5,0*1012/л). Женщин 3,7-4,7 млн. (3,7-4,7*1012/л).

Подсчет количества эритроцитов производится в камере Горяева. Для этого кровь в специальном капилляре меланжере (смеситель) для эритроцитов смешивают с 3% раствором хлорида натрия в соотношении 1:100 или 1:200. Затем капелька этой смеси помещается в сетчатую камеру. Она создается средним выступом камеры и покровным стеклом. Высота камеры 0,1 мм. На среднем выступе нанесена сетка, образующая большие квадраты. Часть этих квадратов разделена на 16 маленьких. Каждая сторона малого квадрата имеет величину 0,05 мм. Следовательно, объем смеси над малым квадратом будет составлять 1/10 мм*1/20мм*1/20мм = 1/4000мм3.

После заполнения камеры, под микроскопом считают количество эритроцитов в 5-ти тех больших квадратах, которые разделены на маленькие, т.е. в 80 маленьких. Затем рассчитывают количество эритроцитов в одном микролитре крови по формуле:

Х = 4000*а*в/б.

Где а – общее количество эритроцитов, полученное при подсчете; б – число малых квадратов в которых производился подсчет (б = 80); в – разведение крови (1:100, 1:200); 4000 – величина, обратная объему жидкости над малым квадратом.

Для быстрого подсчета при большом количестве анализов используют фотоэлектрические эритрогемометры. Принцип их действия основан на определении прозрачности взвеси эритроцитов с помощью пучка света, проходящего от источника к светочувствительному датчику. Фотоэлектрокалориметры. Увеличение содержания эритроцитов в крови называется эритроцитозом или эритремией; уменьшение – эритропенией или анемией. Эти изменения могут быть относительными и абсолютными. Например, относительное уменьшение их количества возникает при задержке воды в организме, а увеличение – при обезвоживании. Абсолютное уменьшение содержания эритроцитов, т.е. анемия, наблюдается при кровопотере, нарушениях кроветворения, разрушении эритроцитов гемолитическими ядами или при переливании несовместимой крови.

Гемолиз – это разрушение мембраны эритроцитов и выход гемоглобина в плазму. В результате кровь становится прозрачной.

Различают следующие виды гемолиза:

1. По месту возникновения:

· Эндогенный, т.е. в организме.

· Экзогенный, вне его. Например, во флаконе с кровью, аппарате искусственного кровообращения.

2. По характеру:

· Физиологический. Он обеспечивает разрушение старых и патологических форм эритроцитов. Имеется два механизма. Внутриклеточный гемолиз происходит в макрофагах селезенки, костного мозга, клетках печени. Внутрисосудистый – в мелких сосудах, из которых гемоглобин с помощью белка плазмы гаптоглобина переносится к клеткам печени. Там гем гемоглобина превращается в билирубин. В сутки разрушается около 6-7 г гемоглобина.

· Патологический.

3. По механизму возникновения:

· Химический. Возникает при воздействии на эритроциты веществ, растворяющих липиды мембраны. Это спирты, эфир, хлороформ, щелочи кислоты и т.д. В частности, при отравлении большой дозой уксусной кислоты возникает выраженный гемолиз.

· Температурный. При низких температурах в эритроцитах образуются кристаллики льда, разрушающие их оболочку.

· Механический. Наблюдается при механических разрывах мембран. Например, при встряхивании флакона с кровью или ее перекачивание аппаратом искусственного кровообращения.

· Биологический. Происходит при действии биологических факторов. Эти гемолитические яды бактерий, насекомых, змей. В результате переливания несовместимой крови.

· Осмотический. Возникает в том случае, если эритроциты попали в среду с осмотическим давлением ниже, чем у крови. Вода входит в эритроциты, они набухают и лопаются. Концентрация хлорида натрия, при которой происходит гемолиз 50% всех эритроцитов, является мерой их осмотической стойкости. Ее определяют в клинике для диагностики заболеваний печени, анемий. Осмотическая стойкость должна быть не ниже 0,46% NaCl.

При помещении эритроцитов в среду с большим, чем у крови, осмотическим давлением, происходит плазмолиз. Это сморщивание эритроцитов. Его используют для подсчета эритроцитов.

studfiles.net


Смотрите также

 
ЕВРОМЕД - лечебно-диагностический центр | Тюмень, ул. М. Горького, д. 44, тел. /3452/ 507-543
 
Медицинские услуги в ЛПЦ «Евромед» оказываются платно и по полисам добровольного медицинского страхования.*

* Медицинская помощь без взимания платы Вам может быть оказана в лечебно-профилактических учреждениях по месту жительства:
В рамках программы государственных гарантий бесплатного оказания гражданам медицинской помощи (утверждена Постановлением Правительства Российской Федерации от 19 декабря 2015 г. №1382);
По территориальной программе государственных гарантий бесплатного оказания гражданам медицинской помощи (утверждена постановлением Правительства Тюменской области от 28 декабря 2009 г. N 377-п)
Содержание, карта сайта.